
Numerical Differentiation
& Integration

Shunsuke Tsuda

ECON 2020 Computing for Economists

Spring 2023

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Motivation

Differentiation and integration are two basic operations
in scientific computation and a lot of economic
applications. For example:
• Optimization and non-linear equation solving

(gradients, Hessians, Jacobians)

• Differential equations

• Computing expectations given some probability
distributions (integration)

• Computing consumer surplus (integration)

• Statistics and econometrics
2 / 100

Numerical Differentiation

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Why Do We Need Numerical Differentiation?

• Any “approximation” involves errors.

• From the standpoint of computational accuracy and time (by
computer), obtaining derivatives analytically should be the first
priority.

• However, we encounter situations where the explicit form of a
function, whose derivative is of our interest, is unknown (e.g.,
simulated method of moments).

• Even if it is possible to obtain derivatives analytically, it might
be extremely time consuming in some cases.

• Also, numerical differentiation helps us to check errors of
analytical computations by hand (e.g., deriving theoretical
predictions for signs).

4 / 100

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Why Do We Need Numerical Differentiation?

• Any “approximation” involves errors.

• From the standpoint of computational accuracy and time (by
computer), obtaining derivatives analytically should be the first
priority.

• However, we encounter situations where the explicit form of a
function, whose derivative is of our interest, is unknown (e.g.,
simulated method of moments).

• Even if it is possible to obtain derivatives analytically, it might
be extremely time consuming in some cases.

• Also, numerical differentiation helps us to check errors of
analytical computations by hand (e.g., deriving theoretical
predictions for signs).

5 / 100

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Why Do We Need Numerical Differentiation?

• Any “approximation” involves errors.

• From the standpoint of computational accuracy and time (by
computer), obtaining derivatives analytically should be the first
priority.

• However, we encounter situations where the explicit form of a
function, whose derivative is of our interest, is unknown (e.g.,
simulated method of moments).

• Even if it is possible to obtain derivatives analytically, it might
be extremely time consuming in some cases.

• Also, numerical differentiation helps us to check errors of
analytical computations by hand (e.g., deriving theoretical
predictions for signs).

6 / 100

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Why Do We Need Numerical Differentiation?

• Any “approximation” involves errors.

• From the standpoint of computational accuracy and time (by
computer), obtaining derivatives analytically should be the first
priority.

• However, we encounter situations where the explicit form of a
function, whose derivative is of our interest, is unknown (e.g.,
simulated method of moments).

• Even if it is possible to obtain derivatives analytically, it might
be extremely time consuming in some cases.

• Also, numerical differentiation helps us to check errors of
analytical computations by hand (e.g., deriving theoretical
predictions for signs).

7 / 100

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Overview

• Direct approach (Forward/Backward difference)

• Central difference

• Partial derivatives

• Higher-order and cross derivatives

• Other methods:
• Three-point approximations
• Richardson extrapolation

8 / 100

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Direct Approach (Forward Difference)

• Derivative of a function:

𝑓 ′(𝑥) = lim
4𝑥→0

𝑓 (𝑥 + 4𝑥) − 𝑓 (𝑥)
4𝑥

• A natural approximation (“forward difference”):

𝑓 ′(𝑥) ≈ 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)
ℎ

for some small ℎ > 0.
• How small should ℎ be?

The smaller, the more precise?

9 / 100

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Direct Approach (Forward Difference)

• Derivative of a function:

𝑓 ′(𝑥) = lim
4𝑥→0

𝑓 (𝑥 + 4𝑥) − 𝑓 (𝑥)
4𝑥

• A natural approximation (“forward difference”):

𝑓 ′(𝑥) ≈ 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)
ℎ

for some small ℎ > 0.

• How small should ℎ be?
The smaller, the more precise?

10 / 100

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Direct Approach (Forward Difference)

• Derivative of a function:

𝑓 ′(𝑥) = lim
4𝑥→0

𝑓 (𝑥 + 4𝑥) − 𝑓 (𝑥)
4𝑥

• A natural approximation (“forward difference”):

𝑓 ′(𝑥) ≈ 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)
ℎ

for some small ℎ > 0.
• How small should ℎ be?

The smaller, the more precise?
11 / 100

Illustration of the Forward Difference

Numerical Illustration of the Forward Difference

Too Small ℎ Lose Precision!

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Round-off & Truncation Errors

• Define:
• 𝐿 𝑓 ≡ max𝜉∈[𝑥,𝑥+ℎ] | 𝑓 (𝜉) |
• 𝑓 (𝑥): computed value of 𝑓 (𝑥)
• 𝜖 : machine precision such that:
| 𝑓 (𝑥) − ˆ𝑓 (𝑥) | ≤ 𝜖𝐿 𝑓 ∀𝑥

• Round-off error: | 𝑓 (𝑥+ℎ)− 𝑓 (𝑥)
ℎ

− 𝑓 (𝑥+ℎ)− 𝑓 (𝑥)
ℎ

| ≤ 2𝜖𝐿 𝑓

ℎ

• Taylor expansion of 𝑓 (𝑥 + ℎ) around ℎ = 0:

𝑓 (𝑥 + ℎ) = 𝑓 (𝑥) + 𝑓 ′(𝑥)ℎ + 𝑓 ′′(𝜉)
2 ℎ2, ∃ 𝜉 ∈ [𝑥, 𝑥 + ℎ] ⇒

• Truncation error: | 𝑓 ′(𝑥) − 𝑓 (𝑥+ℎ)− 𝑓 (𝑥)
ℎ

| ≤ ℎ𝑀
2

where 𝑀 ≡ max𝜉∈[𝑥,𝑥+ℎ] | 𝑓 ′′(𝜉) |

20 / 100

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Round-off & Truncation Errors

• Define:
• 𝐿 𝑓 ≡ max𝜉∈[𝑥,𝑥+ℎ] | 𝑓 (𝜉) |
• 𝑓 (𝑥): computed value of 𝑓 (𝑥)
• 𝜖 : machine precision such that:
| 𝑓 (𝑥) − ˆ𝑓 (𝑥) | ≤ 𝜖𝐿 𝑓 ∀𝑥

• Round-off error: | 𝑓 (𝑥+ℎ)− 𝑓 (𝑥)
ℎ

− 𝑓 (𝑥+ℎ)− 𝑓 (𝑥)
ℎ

| ≤ 2𝜖𝐿 𝑓

ℎ

• Taylor expansion of 𝑓 (𝑥 + ℎ) around ℎ = 0:

𝑓 (𝑥 + ℎ) = 𝑓 (𝑥) + 𝑓 ′(𝑥)ℎ + 𝑓 ′′(𝜉)
2 ℎ2, ∃ 𝜉 ∈ [𝑥, 𝑥 + ℎ] ⇒

• Truncation error: | 𝑓 ′(𝑥) − 𝑓 (𝑥+ℎ)− 𝑓 (𝑥)
ℎ

| ≤ ℎ𝑀
2

where 𝑀 ≡ max𝜉∈[𝑥,𝑥+ℎ] | 𝑓 ′′(𝜉) |

21 / 100

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Round-off & Truncation Errors

• Define:
• 𝐿 𝑓 ≡ max𝜉∈[𝑥,𝑥+ℎ] | 𝑓 (𝜉) |
• 𝑓 (𝑥): computed value of 𝑓 (𝑥)
• 𝜖 : machine precision such that:
| 𝑓 (𝑥) − ˆ𝑓 (𝑥) | ≤ 𝜖𝐿 𝑓 ∀𝑥

• Round-off error: | 𝑓 (𝑥+ℎ)− 𝑓 (𝑥)
ℎ

− 𝑓 (𝑥+ℎ)− 𝑓 (𝑥)
ℎ

| ≤ 2𝜖𝐿 𝑓

ℎ

• Taylor expansion of 𝑓 (𝑥 + ℎ) around ℎ = 0:

𝑓 (𝑥 + ℎ) = 𝑓 (𝑥) + 𝑓 ′(𝑥)ℎ + 𝑓 ′′(𝜉)
2 ℎ2, ∃ 𝜉 ∈ [𝑥, 𝑥 + ℎ] ⇒

• Truncation error: | 𝑓 ′(𝑥) − 𝑓 (𝑥+ℎ)− 𝑓 (𝑥)
ℎ

| ≤ ℎ𝑀
2

where 𝑀 ≡ max𝜉∈[𝑥,𝑥+ℎ] | 𝑓 ′′(𝜉) |

22 / 100

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Round-off & Truncation Errors

• Define:
• 𝐿 𝑓 ≡ max𝜉∈[𝑥,𝑥+ℎ] | 𝑓 (𝜉) |
• 𝑓 (𝑥): computed value of 𝑓 (𝑥)
• 𝜖 : machine precision such that:
| 𝑓 (𝑥) − ˆ𝑓 (𝑥) | ≤ 𝜖𝐿 𝑓 ∀𝑥

• Round-off error: | 𝑓 (𝑥+ℎ)− 𝑓 (𝑥)
ℎ

− 𝑓 (𝑥+ℎ)− 𝑓 (𝑥)
ℎ

| ≤ 2𝜖𝐿 𝑓

ℎ

• Taylor expansion of 𝑓 (𝑥 + ℎ) around ℎ = 0:

𝑓 (𝑥 + ℎ) = 𝑓 (𝑥) + 𝑓 ′(𝑥)ℎ + 𝑓 ′′(𝜉)
2 ℎ2, ∃ 𝜉 ∈ [𝑥, 𝑥 + ℎ] ⇒

• Truncation error: | 𝑓 ′(𝑥) − 𝑓 (𝑥+ℎ)− 𝑓 (𝑥)
ℎ

| ≤ ℎ𝑀
2

where 𝑀 ≡ max𝜉∈[𝑥,𝑥+ℎ] | 𝑓 ′′(𝜉) |
23 / 100

Total Error is Non-Monotonic in ℎ

Errors from the Previous Example

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Total Error is Non-Monotonic in ℎ

• Total error is the sum of round-off and truncation errors.

• Round-off error: decreasing in ℎ

• Take differences and sums of floating-point numbers and
divide the result by a small number.

• Equivalent to multiplying the result by a large number.
• This multiplication magnifies any round-off errors in

numerators, which is larger with a smaller ℎ.

• Truncation error: increasing in ℎ

• Mathematical error in the approximation
• 𝑂 (ℎ) (the order of error is one)

𝑂 (ℎ𝑘): the sum of terms with 𝑘th and higher powers of ℎ

26 / 100

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Total Error is Non-Monotonic in ℎ

• Total error is the sum of round-off and truncation errors.

• Round-off error: decreasing in ℎ

• Take differences and sums of floating-point numbers and
divide the result by a small number.

• Equivalent to multiplying the result by a large number.
• This multiplication magnifies any round-off errors in

numerators, which is larger with a smaller ℎ.

• Truncation error: increasing in ℎ

• Mathematical error in the approximation
• 𝑂 (ℎ) (the order of error is one)

𝑂 (ℎ𝑘): the sum of terms with 𝑘th and higher powers of ℎ

27 / 100

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Total Error is Non-Monotonic in ℎ

• Total error is the sum of round-off and truncation errors.

• Round-off error: decreasing in ℎ

• Take differences and sums of floating-point numbers and
divide the result by a small number.

• Equivalent to multiplying the result by a large number.
• This multiplication magnifies any round-off errors in

numerators, which is larger with a smaller ℎ.

• Truncation error: increasing in ℎ

• Mathematical error in the approximation
• 𝑂 (ℎ) (the order of error is one)

𝑂 (ℎ𝑘): the sum of terms with 𝑘th and higher powers of ℎ

28 / 100

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Optimal ℎ Minimizes the Total Error

• Total error (= truncation + round-off errors):
| 𝑓 ′(𝑥) − 𝑓 (𝑥+ℎ)− 𝑓 (𝑥)

ℎ
| ≤ 2𝜖𝐿 𝑓

ℎ
+ ℎ𝑀

2 ≡ 𝑔(ℎ)
Recall: 𝐿 𝑓 ≡ max𝜉 ∈[𝑥,𝑥+ℎ] | 𝑓 (𝜉) | & 𝑀 ≡ max𝜉 ∈[𝑥,𝑥+ℎ] | 𝑓 ′′(𝜉) |

• Optimal ℎ: ℎ∗ = arg minℎ 𝑔(ℎ) = 2
√︃

𝜖𝐿 𝑓

𝑀

• In practice, often set: ℎ∗ = max(|𝑥 |, 1)
√
𝜖

29 / 100

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Backward Difference

• Approximate 𝑓 ′(𝑥) by:

𝑓 ′(𝑥) ≈ 𝑓 (𝑥) − 𝑓 (𝑥 − ℎ)
ℎ

• Similar properties as the forward difference

• When might we use this backward difference instead
of the forward difference?

• Important to have a sense of functional shapes

30 / 100

Prefer Backward Difference When Left Derivative Matters

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Central Difference

• Approximate 𝑓 ′(𝑥) by:

𝑓 ′(𝑥) ≈ 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥 − ℎ)
2ℎ

• Manipulate Taylor expansions:

𝑓 (𝑥 + ℎ) − 𝑓 (𝑥 − ℎ) = 2 𝑓 ′(𝑥)ℎ + 𝑓 (3) (𝜉1) + 𝑓 (3) (𝜉2)
6 ℎ3 ⇒

• Truncation error: | 𝑓 ′(𝑥) − 𝑓 (𝑥+ℎ)− 𝑓 (𝑥−ℎ)
2ℎ | = 𝑂 (ℎ2)

32 / 100

Figure: Higher Accuracy by the Central Difference

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Errors and Optimal ℎ

• Round-off error: | 𝑓 (𝑥+ℎ)− 𝑓 (𝑥−ℎ)2ℎ − 𝑓 (𝑥+ℎ)− 𝑓 (𝑥−ℎ)
2ℎ | ≤ 𝜖𝐿 𝑓

ℎ

• Truncation error: | 𝑓 ′(𝑥) − 𝑓 (𝑥+ℎ)− 𝑓 (𝑥−ℎ)
2ℎ | ≤ ℎ2𝑀

6

(𝐿 𝑓 ≡ max𝜉 ∈[𝑥−ℎ,𝑥+ℎ] | 𝑓 (𝜉) | & 𝑀 ≡ max𝜉 ∈[𝑥−ℎ,𝑥+ℎ] | 𝑓 (3) (𝜉) |)

• Total error: | 𝑓 ′(𝑥) − 𝑓 (𝑥+ℎ)− 𝑓 (𝑥−ℎ)
2ℎ | ≤ 𝜖𝐿 𝑓

ℎ
+ ℎ2𝑀

6

• ℎ∗ =
3√3𝜖𝐿 𝑓

3√
𝑀

• In practice, set: ℎ∗ = max(|𝑥 |, 1) 3√𝜖

34 / 100

Central Difference is More Accurate than Forward Difference

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Partial Derivatives

• 𝑓 : R𝑛 → R

• 𝑒𝑖 ≡

©­­­­­­­­­«

0
·
·
1
·
·
0

ª®®®®®®®®®¬
← 𝑖’th element

• In the case of central difference,

𝜕 𝑓 (𝑥)
𝜕𝑥𝑖

=
𝑓 (𝑥 + 𝑒𝑖ℎ𝑖) − 𝑓 (𝑥 − 𝑒𝑖ℎ𝑖)

2ℎ𝑖
+𝑂 (ℎ2)

36 / 100

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Trade-off b/w Accuracy & Efficiency

• The central difference is one order more accurate
than the preceeding one-sided (forward/backward)
difference.
• The tradeoff comes into play as we increase the

dimensionality of 𝑓 .
• E.g.) Suppose we compute the Jacobian matrix of

𝑓 : R𝑛 → R𝑚. How many functional evaluations are
required by the one-sided difference and by the
central difference?

The central difference takes approximately twice as
long to compute when 𝑛 is large.

37 / 100

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Trade-off b/w Accuracy & Efficiency

• The central difference is one order more accurate
than the preceeding one-sided (forward/backward)
difference.
• The tradeoff comes into play as we increase the

dimensionality of 𝑓 .
• E.g.) Suppose we compute the Jacobian matrix of

𝑓 : R𝑛 → R𝑚. How many functional evaluations are
required by the one-sided difference and by the
central difference?
The central difference takes approximately twice as
long to compute when 𝑛 is large.

38 / 100

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Higher-Order & Cross Derivatives

• 𝑓 : R𝑛 → R
• In the case of central difference,

𝜕2 𝑓 (𝑥)
𝜕𝑥2

𝑖

=
𝑓 (𝑥 + 𝑒𝑖ℎ𝑖) − 2 𝑓 (𝑥) + 𝑓 (𝑥 − 𝑒𝑖ℎ𝑖)

ℎ2
𝑖

+𝑂 (ℎ4)

𝜕2 𝑓 (𝑥)
𝜕𝑥𝑖𝜕𝑥 𝑗

=
𝑓 (𝑥 + ℎ𝑖𝑒𝑖 + ℎ 𝑗𝑒 𝑗) − 𝑓 (𝑥 + ℎ𝑖𝑒𝑖 − ℎ 𝑗𝑒 𝑗) − 𝑓 (𝑥 − ℎ𝑖𝑒𝑖 + ℎ 𝑗𝑒 𝑗) + 𝑓 (𝑥 − ℎ𝑖𝑒𝑖 − ℎ 𝑗𝑒 𝑗)

4ℎ𝑖ℎ 𝑗

+𝑂 (ℎ4)

where 𝑂 (ℎ4) part is proportional to ℎ2
𝑖
ℎ2
𝑗

for the cross derivative

(Derive them by yourself!)

• In practice, set: ℎ∗
𝑖
= max(|𝑥 |, 1) 4√𝜖

• Numerical differentiation accumulates errors for
higher-order derivatives.

39 / 100

Three-point Approximation

• Aproximate the derivative with a weighted sum of evaluated values of the
function at 3 points:

𝑓 ′(𝑥) ≈ 𝑎 𝑓 (𝑥) + 𝑏 𝑓 (𝑥 + ℎ) + 𝑐 𝑓 (𝑥 + 𝜆ℎ)

• Use Taylor expansions for 𝑓 (𝑥 + ℎ) and 𝑓 (𝑥 + 𝜆ℎ) around 𝑥 to obtain:

𝑎 𝑓 (𝑥) + 𝑏 𝑓 (𝑥 + ℎ) + 𝑐 𝑓 (𝑥 + 𝜆ℎ)
= (𝑎 + 𝑏 + 𝑐) 𝑓 (𝑥) + ℎ(𝑏 + 𝑐𝜆) 𝑓 ′(𝑥)

+ ℎ2

2 (𝑏 + 𝑐𝜆
2) 𝑓 ′′(𝑥) + ℎ3

6 [𝑏 𝑓
(3) (𝜉1) + 𝑐𝜆3 𝑓 (3) (𝜉2)]

• Obtain the coefficients by solving:

𝑎 + 𝑏 + 𝑐 = 0
𝑏 + 𝑐𝜆 = 1/ℎ
𝑏 + 𝑐𝜆2 = 0

• Error: 𝑂 (ℎ2)

Richardson extrapolation

• In some approximation procedures, one first decides a step size
ℎ and then generates an approximation 𝐴(ℎ) to some desired
quantity 𝐴.

• Idea: Generate a better approximation (i.e., with a higher
order error) from multiple lower order approximations.

• See Collard’s lecture note 4 for detail.

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Further Readings

• Judd, Chapter 7

• Collard, Lecture Notes 4

• Miranda & Fackler, Chapter 5

42 / 100

Lab

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Exercise

Aim. Understand the importance of round-off errors arising from
floating point numbers. Compare the accuracy between
different methods

• Let 𝑓 (𝑥) = sin 𝑥

• Then, 𝑓 ′(𝑥) = cos 𝑥 and 𝑓 ′(0.5) ≈ 0.8775825619

Task.

• Approximate 𝑓 ′(0.5) by forward and central differences

• Try ℎ = 10−𝑘 for 𝑘 = 1, 2, ... , 20

• Plot log10(total errors) by the two methods in the same figure,
with − log10(ℎ) in the horizontal axis. Submit your plot.

44 / 100

Assignment 5

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Setting: Quasi-hyperbolic discounting structure

• An application to a simple structural model
• Time preferences play important roles for various dynamic decisions.
• Not only discount factor, but also present biasness matters.

e.g.) I do not want to do my homework just now, so I allocate much
more study time to tomorrow. The ratio of study time between today
and a future day can differ from the planned ratio between two future
days with an equal interval.

• An individual at period 𝑡 maximizes lifetime utility:

𝑈 (𝑐) = 𝑢(𝑐𝑡) + 𝛽
∞∑︁
𝑘=1

𝛿𝑘𝑢(𝑐𝑡+𝑘)

• Read Andreoni and Sprenger (2012 AER), Augenblick et al. (2015 QJE),
and Casaburi and Macchiavello (2019 AER) if you are interested, but not
necessary for this assignment.

46 / 100

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Experiment & Data Generating Process
• A researcher conducts a lab experiment in India for obtaining time

preference parameters.
• Subjects are asked to choose two-period intertemporal allocations of

money (Rs. 4000) within a convex budget set, with various 𝑡 (earlier
date), 𝑘 (time interval between th earlier and later dates), and several
interest rates 𝑃 = (1 + 𝑟).

• Assume that the subjects solve:

𝑈 (𝑐𝑡 , 𝑐𝑡+𝑘) = 𝑐𝛼𝑡 + 𝛽1l𝑡=0𝛿𝑘𝑐𝛼
𝑡+𝑘

s.t. 𝑃𝑐𝑡 + 𝑐𝑡+𝑘 = 4000

• Solving this,

𝑐𝑡 =
4000

(𝛽1l𝑡=0𝛿𝑘𝑃)1/(1−𝛼) + 𝑃
≡ 𝑔(1l𝑡=0, 𝑘, 𝑃; 𝛽, 𝛿, 𝛼)

• Parameters: 𝛽: present biasness, 𝛿: discount factor, 𝛼: curvature
(𝐼𝐸𝑆 = 1/(1 − 𝛼)).

• Distributed data: 𝑤𝑖,𝑞 ≡ {𝑐𝑖,𝑡𝑞 , 𝑐𝑖,𝑡𝑞+𝑘𝑞 , 𝑡𝑞 , 𝑘𝑞 , 𝑃𝑞}
(𝑖: individual, 𝑞: question) 47 / 100

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Assignment
Aim. Experience that numerical differentiation might affect a researcher’s

conclusion significantly.
• In the previous assignment, you have estimated the parameters

𝜃 = (𝛽, 𝛿, 𝛼̂) by non-linear least squares (NLLS), as an M-estimator, a
class of extremum estimators:
max
𝛽, 𝛿,𝛼

∑︁
𝑖,𝑞

{
− [𝑐𝑖,𝑡𝑞 − 𝑔(1l𝑡𝑞=0, 𝑘𝑞 , 𝑃𝑞; 𝛽, 𝛿, 𝛼)]2

}
≡ max

𝜃

∑︁
𝑖,𝑞

𝑚(𝑤𝑖,𝑞; 𝜃)

Task. Given 𝑤𝑖,𝑞 & 𝜃 (that we estimated), numerically compute standard errors
and 95% confidence intervals of 𝜃.

• For computing 𝑠(𝑤𝑖,𝑞; 𝜃), the score function, analytically derive it and
substitute parameter estimates and data into it.

• Obtain 𝐻 (𝑤𝑖,𝑞; 𝜃), Hessian of 𝑚(𝑤𝑖,𝑞; 𝜃), by the following ways:
1. Directly apply 2nd-order numerical differentiations to 𝑚(𝑤𝑖,𝑞 ; 𝜃).
2. Apply 1st-order numerical differentiations to 𝑠 (𝑤𝑖,𝑞 ; 𝜃), i.e., numerically

compute the Jacobian of 𝑠 (𝑤𝑖,𝑞 ; 𝜃).
3. Analytically derive the consistent estimate of E[𝐻 (𝑤𝑖,𝑞 ; 𝜃0)] and substitute

parameter estimates and data into it
48 / 100

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Hints
• For numerical differentiation, use a hand-made central difference method

or numdifftools.
• For analytical derivations, do them by hand or by SymPy.

• Assume that conditions in Propositions 7.3 (or 7.4) and 7.8 in the
Hayashi textbook are satisfied.

• Therefore, use the result of asymptotic normality of M-estimators and the
consistent asymptotic variance estimation:�

𝐴𝑣𝑎𝑟 (𝜃) =

{ 1
𝑁

∑︁
𝑖,𝑞

𝐻 (𝑤𝑖,𝑞; 𝜃)
}−1

Σ̂

{ 1
𝑁

∑︁
𝑖,𝑞

𝐻 (𝑤𝑖,𝑞; 𝜃)
}−1

where Σ̂ ≡ 1
𝑁

∑
𝑖,𝑞 𝑠(𝑤𝑖,𝑞; 𝜃)𝑠(𝑤𝑖,𝑞; 𝜃) ′ (𝑁: total observation),

𝑠(𝑤𝑖,𝑞; 𝜃) ≡ 𝜕𝑚(𝑤𝑖,𝑞 ;𝜃)
𝜕𝜃

, 𝐻 (𝑤𝑖,𝑞; 𝜃) ≡ 𝜕2𝑚(𝑤𝑖,𝑞 ;𝜃)
𝜕𝜃𝜕𝜃′

Review also Chap 7 of Hayashi’s textbook or the handbook chapter Newey &
McFadden (1994)

49 / 100

https://pypi.org/project/numdifftools/
https://www.sympy.org/en/index.html

Numerical Integration

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Quadrature Problem: Big Picture

• Compute
∫
𝐷
𝑓 (𝑥)𝑑𝑥 where 𝑓 : R𝑛 → R is an integrable

function over the domain 𝐷 ⊂ R.
• However, most integrals cannot be evaluated analytically.

• Use a finite number of evaluations of the integrand 𝑓 and a
weighted sum of those values to approximate:∫
𝐷
𝑓 (𝑥)𝑑𝑥 ≈ ∑

𝑛∈𝑁 𝑤(𝑛) 𝑓 (𝑥𝑛).
• This is necessary because it is infeasible to evaluate 𝑓 (𝑥) for

all 𝑥 ∈ 𝐷; |𝐷 | = ∞.
• Select the efficient method among several alternatives for

improving running times and keeping accuracy.
• Methods differ in how to choose:

• 𝑁: nodes at which the integrand is evaluated
• 𝑤(𝑛): weight assigned to each function evaluation

51 / 100

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Quadrature Problem: Big Picture

• Compute
∫
𝐷
𝑓 (𝑥)𝑑𝑥 where 𝑓 : R𝑛 → R is an integrable

function over the domain 𝐷 ⊂ R.
• However, most integrals cannot be evaluated analytically.
• Use a finite number of evaluations of the integrand 𝑓 and a

weighted sum of those values to approximate:∫
𝐷
𝑓 (𝑥)𝑑𝑥 ≈ ∑

𝑛∈𝑁 𝑤(𝑛) 𝑓 (𝑥𝑛).
• This is necessary because it is infeasible to evaluate 𝑓 (𝑥) for

all 𝑥 ∈ 𝐷; |𝐷 | = ∞.

• Select the efficient method among several alternatives for
improving running times and keeping accuracy.

• Methods differ in how to choose:
• 𝑁: nodes at which the integrand is evaluated
• 𝑤(𝑛): weight assigned to each function evaluation

52 / 100

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Quadrature Problem: Big Picture

• Compute
∫
𝐷
𝑓 (𝑥)𝑑𝑥 where 𝑓 : R𝑛 → R is an integrable

function over the domain 𝐷 ⊂ R.
• However, most integrals cannot be evaluated analytically.
• Use a finite number of evaluations of the integrand 𝑓 and a

weighted sum of those values to approximate:∫
𝐷
𝑓 (𝑥)𝑑𝑥 ≈ ∑

𝑛∈𝑁 𝑤(𝑛) 𝑓 (𝑥𝑛).
• This is necessary because it is infeasible to evaluate 𝑓 (𝑥) for

all 𝑥 ∈ 𝐷; |𝐷 | = ∞.
• Select the efficient method among several alternatives for

improving running times and keeping accuracy.
• Methods differ in how to choose:

• 𝑁: nodes at which the integrand is evaluated
• 𝑤(𝑛): weight assigned to each function evaluation

53 / 100

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Overview

• Newton-Cotes formulas
• Mid-point rule
• Trapezoid rule
• Simpson rule

• Brief intro to interpolation methods
• Adaptive quadrature
• Infinite integration domain
• Gaussian formulas
• Multidimensional quadrature
• Monte Carlo integration
• SciPy integration package (tutorial)

54 / 100

https://docs.scipy.org/doc/scipy/reference/integrate.html
https://docs.scipy.org/doc/scipy/reference/tutorial/integrate.html

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Newton-Cotes formulas: Overview

• {𝑥𝑖}𝑛𝑖=1: a partition of [𝑎, 𝑏] ⊂ R

•
∫ 𝑏

𝑎
𝑓 (𝑥)𝑑𝑥 = lim𝑛→∞

∑𝑛−1
𝑖=1 𝑓 (𝜉𝑖) (𝑥𝑖+1 − 𝑥𝑖)

where 𝜉𝑖 ∈ [𝑥𝑖 , 𝑥𝑖+1]

• General workflow of Newton-Cotes formulas:
• Split the interval into small subintervals

• Approximate 𝑓 by a polynomial on each subinterval

• Integrate this polynomial rather than 𝑓

• Add together the contributions from each subinterval

55 / 100

Newton-Cotes Formula 1: Midpoint Rule

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Midpoint Rule

• The simplest method: just interpolate the constant function
value at the middle point on each interval∫ 𝑏

𝑎

𝑓 (𝑥)𝑑𝑥 = ℎ

𝑛∑︁
𝑖=1

𝑓 (𝑥𝑖) + Error

where ℎ ≡ 𝑏−𝑎
𝑛

& 𝑥𝑖 ≡ 𝑎 + (𝑖 − 1
2)ℎ

• |Error| ≤ (𝑏 − 𝑎) ℎ2

24𝑀 where 𝑀 ≡ max𝑥∈[𝑎,𝑏] | 𝑓 ′′(𝑥) |

• Quadratic convergence for 𝑓 ∈ 𝐶2:
Halve the interval width ⇒ Reduce the error by ≈75%

57 / 100

Newton-Cotes Formula 2: Trapezoid Rule

Trapezoid Rule
• Approximte 𝑓 on each interval with the secant that

interpolates 𝑓 at both ends of the interval∫ 𝑏

𝑎

𝑓 (𝑥)𝑑𝑥 = ℎ

𝑛∑︁
𝑖=1

𝑓 (𝑥𝑖) + 𝑓 (𝑥𝑖+1)
2 + Error

= ℎ

(
𝑓 (𝑎) + 𝑓 (𝑏)

2 +
𝑛−1∑︁
𝑖=1

𝑓 (𝑥𝑖+1)
)
+ Error

where ℎ ≡ 𝑏−𝑎
𝑛

& 𝑥𝑖 ≡ 𝑎 + (𝑖 − 1)ℎ

• |Error| ≤ (𝑏 − 𝑎) ℎ2

6 𝑀 where 𝑀 ≡ max𝑥∈[𝑎,𝑏] | 𝑓 ′′(𝑥) |
(Derive this by yourself!)

• Gained nothing (at the maximum errors) by approximating 𝑓

by a linear function instead of a constant!
i.e., Despite more functional evaluations than the midpoint
rule, there is no accuracy gain!

Too Coarse with Whichever Rule

Newton-Cotes Formula 3: Simpson’s Rule

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Simpson’s Rule: Motivation

• Circumvent the inefficiencies of the midpoint/trapezoid rules

• Use a piecewise quadratic interpolant of 𝑓 which uses the
values of 𝑓 at 𝑥𝑖, 𝑥𝑖+1, and 𝑥𝑖+𝑥𝑖+1

2 for 𝑖 = 1, ... , 𝑛

• Need interpolation, one type of function approximation
problems

62 / 100

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Function Approximation Methods

• In many situations, we need to approximate functions because
in many cases:
• Computing values of a function at all points is not

possible (as we saw just now!)
• Functional forms are unknown but only a few points are

observed
• In both cases, compute or use values of a function at only a

few points and guess its values elsewhere
• Interpolation: any procedure that finds a “nice” function

that goes through a collection of prescribed points
• The simplest one is linear interpolation, which we’ve already

used in the trapezoid rule
• For other approximation methods, read Judd, Chap 6

63 / 100

Lagrange Interpolation

• Take a collection of 𝑛 points in R2, 𝐷 = {(𝑥𝑖, 𝑦𝑖) |𝑖 = 1, ... , 𝑛}
(data)

• Then, find a degree 𝑛 − 1 polynomial, 𝑝(𝑥) s.t. 𝑦𝑖 = 𝑝(𝑥𝑖),
𝑖 = 1, ... , 𝑛

• Define: 𝑙𝑖 (𝑥) =
∏

𝑗≠𝑖
𝑥−𝑥 𝑗
𝑥𝑖−𝑥 𝑗

• Notice: 𝑙𝑖 (𝑥) = 1 if 𝑥 = 𝑥𝑖 & 𝑙𝑖 (𝑥) = 0 if 𝑥 = 𝑥 𝑗 for 𝑗 ≠ 𝑖

• Therefore, 𝑝(𝑥) = ∑𝑛
𝑖=1 𝑦𝑖𝑙𝑖 (𝑥) interpolates the data, i.e.,

𝑦𝑖 = 𝑝(𝑥𝑖) ∀𝑖

• In the case of Simpson’s rule, 𝑛 = 3 and thus this becomes a
quadratic interpolant

• For other interpolation methods, read Judd, Chap 6

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Simpson’s Rule on [𝑥𝑖, 𝑥𝑖+1]
• Using the Lagrange interpolation,∫ 𝑥𝑖+1

𝑥𝑖

𝑓 (𝑥)𝑑𝑥 =

(
𝑥𝑖+1 − 𝑥𝑖

6

) [
𝑓 (𝑥𝑖) + 4 𝑓

(
𝑥𝑖 + 𝑥𝑖+1

2

)
+ 𝑓 (𝑥𝑖+1)

]
+ Error

• |Error| ≤ (𝑥𝑖+1−𝑥𝑖)
5

2880 max𝑥∈[𝑥𝑖 ,𝑥𝑖+1] 𝑓
(4) (𝑥)

65 / 100

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Simpson’s Rule with Intervals

• 𝑛: an even number of intervals
• Using the Lagrange interpolation and the previous result,∫ 𝑏

𝑎

𝑓 (𝑥)𝑑𝑥 =
ℎ

3 [𝑓 (𝑥1) + 4 𝑓 (𝑥2) + 2 𝑓 (𝑥3) + 4 𝑓 (𝑥4) + · · · + 4 𝑓 (𝑥𝑛) + 𝑓 (𝑥𝑛+1)] + Error

where ℎ ≡ 𝑏−𝑎
𝑛

& 𝑥𝑖 ≡ 𝑎 + (𝑖 − 1)ℎ

• |Error| ≤ ℎ4 (𝑏−𝑎)
180 max𝑥∈[𝑎,𝑏] 𝑓

(4) (𝑥) (4th-order convergence)

• Halve the interval width ⇒ Reduce the error by ≈93.75%

• With this asymptotically smaller error, Simpson’s rule is a very
popular method

66 / 100

Choice of ℎ Matters A Lot!

Choice of ℎ Matters A Lot!

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Adaptive Quadrature

• Truncation error matters, while numerical integration is very
insensitive to round-off errors

• But, too small ℎ has a computational burden

• Idea: increase the number of nodes until the sequence of
estimates of the integral converges.

• Recommended especially when the functional shape is unclear

• One simple way: double the number of intervals with each
operation.

• More sophisticated way: concentrate new evaluation points in
those areas where the integrand appears to be most irregular.

69 / 100

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Adaptive Quadrature

• Truncation error matters, while numerical integration is very
insensitive to round-off errors

• But, too small ℎ has a computational burden

• Idea: increase the number of nodes until the sequence of
estimates of the integral converges.

• Recommended especially when the functional shape is unclear

• One simple way: double the number of intervals with each
operation.

• More sophisticated way: concentrate new evaluation points in
those areas where the integrand appears to be most irregular.

70 / 100

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Adaptive Quadrature

• Truncation error matters, while numerical integration is very
insensitive to round-off errors

• But, too small ℎ has a computational burden

• Idea: increase the number of nodes until the sequence of
estimates of the integral converges.

• Recommended especially when the functional shape is unclear

• One simple way: double the number of intervals with each
operation.

• More sophisticated way: concentrate new evaluation points in
those areas where the integrand appears to be most irregular.

71 / 100

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Adaptive Quadrature

• Truncation error matters, while numerical integration is very
insensitive to round-off errors

• But, too small ℎ has a computational burden

• Idea: increase the number of nodes until the sequence of
estimates of the integral converges.

• Recommended especially when the functional shape is unclear

• One simple way: double the number of intervals with each
operation.

• More sophisticated way: concentrate new evaluation points in
those areas where the integrand appears to be most irregular.

72 / 100

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Infinite Integration Domains

• How to approximate
∫ ∞
0 𝑓 (𝑥)𝑑𝑥?

(Restrict to the cases where
∫ ∞
0 𝑓 (𝑥)𝑑𝑥 exists)

•
∫ ∞
0 𝑓 (𝑥)𝑑𝑥 = lim𝑏→∞

∫ 𝑏

0 𝑓 (𝑥)𝑑𝑥 ≈
∫ 𝑏

0 𝑓 (𝑥)𝑑𝑥 with a very
large 𝑏 is not a good idea: too time consuming

• Transform it to the finite integration domain by using:∫ 𝑏

𝑎

𝑓 (𝑥)𝑑𝑥 =

∫ 𝜙−1 (𝑏)

𝜙−1 (𝑎)
𝑓 (𝜙(𝑧))𝜙′(𝑧)𝑑𝑧

where 𝜙 : R→ R, increasing, and 𝐶1 on [𝑎, 𝑏]

E.g.)
∫ ∞

0
𝑓 (𝑥)𝑑𝑥 =

∫ 1

0
𝑓

(𝑧

1 − 𝑧

)
(1 − 𝑧)−2𝑑𝑧∫ ∞

−∞
𝑓 (𝑥)𝑑𝑥 =

∫ 1

0
𝑓

(
ln 𝑧

1 − 𝑧

)
[𝑧(1 − 𝑧)]−1𝑑𝑧

73 / 100

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Newton-Cotes Formulas: Example

Table: Approximations which achieve errors <10−6

Object
∫ 1
0 (−𝑥

2 + 𝑥)𝑑𝑥
∫ 1
0 (𝑥

9 − 𝑥2 + 𝑥)𝑑𝑥
Method Midpoint Trapezoid Simpson’s Midpoint Trapezoid Simpson’s

n 289 410 2 541 764 42
Computation time (sec.) 0.000271 6.13E-05 0.000122 0.000684 0.000138 0.00012

Available SciPy functions: scipy.integrate.trapz & scipy.integrate.simps
74 / 100

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Gaussian Quadrature: Motivation
• (Recall) Newton-Cotes formulas:

∫ 𝑏

𝑎
𝑓 (𝑥)𝑑𝑥 ≈ ∑𝑛

𝑖=1 𝜔𝑖 𝑓 (𝑥𝑖)
for some arbitrary nodes {𝑥𝑖} ∈ [𝑎, 𝑏] and weights {𝜔𝑖}

i.e., N-C formulas attempt to approximate the given function directly on
subintervals using polynomials

• Are there more efficient choices of nodes and weights?

• Idea: Gaussian approach finds nodes {𝑥𝑖} and weights {𝜔𝑖} to
achieve the better approximation

• Given a nonnegative weighting function 𝑤(𝑥), Gaussian
quadrature computes the following approximation:∫ 𝑏

𝑎

𝑓 (𝑥)𝑤(𝑥)𝑑𝑥 ≈
𝑛∑︁
𝑖=1

𝜔𝑖 𝑓 (𝑥𝑖)

for some nodes 𝑥𝑖 ∈ [𝑎, 𝑏] and positive weights 𝜔𝑖

75 / 100

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Gaussian Quadrature: Motivation
• (Recall) Newton-Cotes formulas:

∫ 𝑏

𝑎
𝑓 (𝑥)𝑑𝑥 ≈ ∑𝑛

𝑖=1 𝜔𝑖 𝑓 (𝑥𝑖)
for some arbitrary nodes {𝑥𝑖} ∈ [𝑎, 𝑏] and weights {𝜔𝑖}

i.e., N-C formulas attempt to approximate the given function directly on
subintervals using polynomials

• Are there more efficient choices of nodes and weights?
• Idea: Gaussian approach finds nodes {𝑥𝑖} and weights {𝜔𝑖} to

achieve the better approximation
• Given a nonnegative weighting function 𝑤(𝑥), Gaussian

quadrature computes the following approximation:∫ 𝑏

𝑎

𝑓 (𝑥)𝑤(𝑥)𝑑𝑥 ≈
𝑛∑︁
𝑖=1

𝜔𝑖 𝑓 (𝑥𝑖)

for some nodes 𝑥𝑖 ∈ [𝑎, 𝑏] and positive weights 𝜔𝑖

76 / 100

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Gaussian Quadrature: Intuition

• Exact integration for a finite-dimensional collection of
functions: Choose weights and nodes such that the
approximation is exactly correct if 𝑓 is a polynomial of the
given order

• Gaussian quadrature accomplishes this for spaces of degree
2𝑛 − 1 polynomials using 𝑛 nodes and 𝑛 weights:

Given a nonnegative weighting function 𝑤(𝑥), we can find 𝑛

points {𝑥𝑖}𝑛𝑖=1 ⊂ [𝑎, 𝑏] and 𝑛 nonnegative weights {𝜔𝑖}𝑛𝑖=1 s.t.∫ 𝑏

𝑎

𝑓 (𝑥)𝑤(𝑥)𝑑𝑥 =

𝑛∑︁
𝑖=1

𝜔𝑖 𝑓 (𝑥𝑖) ∀ 𝑓 ∈ F2𝑛−1

77 / 100

Theorem
Suppose

1. {𝜑𝑘 (𝑥)}∞𝑘=0: an orthonormal family of polynomials w.r.t. 𝑤(𝑥)
on [a,b]

2. 𝑞𝑘 : s.t. 𝜑𝑘 (𝑥) = 𝑞𝑘𝑥
𝑘 + · · ·

3. 𝑥𝑖, 𝑖 = 1, ... , 𝑛: 𝑛 roots of 𝜑𝑛 (𝑥) s.t. 𝑥1 < 𝑥2 · ·· < 𝑥𝑛

4. 𝜔𝑖 = − 𝑞𝑛+1/𝑞𝑛
𝜑′𝑛 (𝑥𝑖)𝜑𝑛+1 (𝑥𝑖)

Then

(i) 𝑎 < 𝑥1 < 𝑥2 · ·· < 𝑥𝑛 < 𝑏

(ii) If 𝑓 is 𝐶 (2𝑛) on [𝑎, 𝑏], then∫ 𝑏

𝑎
𝑓 (𝑥)𝑤(𝑥)𝑑𝑥 =

∑𝑛
𝑖=1 𝜔𝑖 𝑓 (𝑥𝑖) + 𝑓 (2𝑛) (𝜉)

𝑞2
𝑛 (2𝑛)!

∃ 𝜉 ∈ [𝑎, 𝑏]

(iii)
∫ 𝑏

𝑎
𝑓 (𝑥)𝑤(𝑥)𝑑𝑥 =

∑𝑛
𝑖=1 𝜔𝑖 𝑓 (𝑥𝑖) ∀ 𝑓 ∈ F2𝑛−1

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Gaussian Quadrature: Implementation

• The theorem tells us how to compute the necessary nodes {𝑥𝑖}
and weights {𝜔𝑖}

SciPy integration package contains modules computing them.

• Or, follow some specific Gaussian formulas:

Formula Domain Weight
Gauss-Chebyshev [−1, 1] 𝑤(𝑥) = (1 − 𝑥2)− 1

2

Gauss-Legendre [−1, 1] 𝑤(𝑥) = 1
Gauss-Hermite [−∞,∞] 𝑤(𝑥) = 𝑒−𝑥

2

Gauss-Laguerre [0,∞] 𝑤(𝑥) = 𝑒−𝑥

Their nodes and weights are available in tables (e.g., in Judd, Section
7.2), in online data files (e.g., this), and in standard software packages
and libraries (e.g., scipy.special).

79 / 100

https://docs.scipy.org/doc/scipy/reference/tutorial/integrate.html
https://keisan.casio.com/exec/system/1329114617
https://docs.scipy.org/doc/scipy/reference/special.html

Gaussian Quadrature: E.g. with scipy.integrate.fixed quad

Again, compute
∫ 1
0 (𝑥

9 − 𝑥2 + 𝑥)𝑑𝑥

n 2n-1 Approximation Error Computation time (sec.)
1 1 0.2519531 0.014714 0.000693
2 3 0.2256944 0.040972 0.00105
3 5 0.2622292 0.004438 0.000316
4 7 0.2665646 0.000102 0.000597
5 9 0.2666667 1.11E-16 0.000327

Recall: 541, 764, and 42 draws were needed to achieve errors < 10−6 for the same function by
midpoint, trapezoid, and Simpson’s rules, respectively!

Gauss-Chebyshev

• Formula:∫ 1

−1
𝑓 (𝑥) (1 − 𝑥2)− 1

2 𝑑𝑥 =
𝜋

𝑛

𝑛∑︁
𝑖=1

𝑓 (𝑥𝑖) +
𝜋

22𝑛−1
𝑓 (2𝑛) (𝜉)
(2𝑛)!

for some 𝜉 ∈ [−1, 1] where 𝑥𝑖 = cos
(

2𝑖−1
2𝑛 𝜋

)
• Letting 𝑦 ≡ 2(𝑥−𝑎)

𝑏−𝑎 − 1,∫ 𝑏

𝑎

𝑓 (𝑥)𝑑𝑥 =
𝑏 − 𝑎

2

∫ 1

−1
𝑔(𝑦) (1 − 𝑦2)− 1

2 𝑑𝑦

where 𝑔(𝑦) ≡ 𝑓

(
𝑎 + (𝑦+1) (𝑏−𝑎)2

)
(1 − 𝑦2) 1

2

Gauss-Legendre

• Formula:∫ 1

−1
𝑓 (𝑥)𝑑𝑥 =

𝑛∑︁
𝑖=1

𝜔𝑖 𝑓 (𝑥𝑖) +
22𝑛+1(𝑛!)4
(2𝑛 + 1)!(2𝑛)!

𝑓 (2𝑛) (𝜉)
(2𝑛)!

for some 𝜉 ∈ [−1, 1]

• Uses a similar way of domain conversion from [𝑎, 𝑏]

• Exponential convergence to the true value

Gauss-Hermite

• Formula:∫ ∞

−∞
𝑓 (𝑥)𝑒−𝑥2

𝑑𝑥 =

𝑛∑︁
𝑖=1

𝜔𝑖 𝑓 (𝑥𝑖) +
𝑛!
√
𝜋

2𝑛
𝑓 (2𝑛) (𝜉)
(2𝑛)!

for some 𝜉 ∈ (−∞,∞)
• Useful for many economics application because normally

distributed random variables are often used.
• Let 𝑥 ∼ 𝑁 (𝜇, 𝜎2) & 𝑦 ≡ 𝑥−𝜇√

2𝜎
. Then,

𝐸 [𝑓 (𝑥)] = (2𝜋𝜎2)− 1
2

∫ ∞

−∞
𝑓 (𝑥)𝑒−

(𝑥−𝜇)2
2𝜎2 𝑑𝑥

= 𝜋−
1
2

∫ ∞

−∞
𝑓
(√

2𝜎𝑦 + 𝜇
)
𝑒−𝑦

2
𝑑𝑦

• ln(𝑥) ∼ 𝑁 (𝜇, 𝜎2) is also often used. In what situations?

Gauss-Laguerre

• Formula:∫ ∞

0
𝑓 (𝑥)𝑒−𝑥𝑑𝑥 =

𝑛∑︁
𝑖=1

𝜔𝑖 𝑓 (𝑥𝑖) +
(𝑛!)2

(2𝑛 + 1)!(2𝑛)!
𝑓 (2𝑛) (𝜉)
(2𝑛)!

for some 𝜉 ∈ [0,∞)

• Useful for computing the discounted sum of payoffs in an
infinite horizon problem

• E.g.)∫ ∞

0
𝑒−𝜌𝑡𝑢(𝑐(𝑡))𝑑𝑡 =

∫ ∞

0
𝑒−𝑦𝑢

(
𝑐

(𝑦
𝜌

)) 1
𝜌
𝑑𝑦 ≈ 1

𝜌

𝑛∑︁
𝑖=1

𝜔𝑖 𝑓

(𝑦𝑖
𝜌

)
where 𝑦 ≡ 𝜌𝑡 & 𝑓 ≡ 𝑢 ◦ 𝑐

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Multidimensional Quadrature

• One way: Product rule

• Approximate:
∫ 𝑏1
𝑎1
· · ·

∫ 𝑏𝑑

𝑎𝑑
𝑓 (𝑥1, ... , 𝑥𝑑)𝑑𝑥1 · · · 𝑑𝑥𝑑

• by:
∑𝑛

𝑖1=1 · · ·
∑𝑛

𝑖𝑑=1 𝜔
1
𝑖1
· · · 𝜔𝑑

𝑖𝑑
𝑓 (𝑥1

𝑖1
, ... , 𝑥𝑑

𝑖𝑑
)

• Apply either Newton-Cotes or Gaussian formulas.

• Curse of dimensionality: with 𝑛 nodes in each direction for a
𝑑-dimensional problem, 𝑛𝑑 functional evaluations are needed.

• Alternatives for high dimensional problems:
• Monte Carlo Integration
• Sparse grids: Heiss and Winschel 2008 (web)

85 / 100

https://www.sciencedirect.com/science/article/pii/S0304407607002552
http://www.sparse-grids.de/

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Monte Carlo (MC) Integration: Overview

• Based on the law of large number and the central limit theorem

• Any result is a random variable

• Put a structure on the error which has a probabilistic
distribution

• Therefore, we need to present both the estimate of integral
and the estimate of its variance or standard error

• Useful for high-dimensional problems

• Robust and simple

86 / 100

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

MC Integration: A Crude Way

• Draw a random sample 𝑥1, 𝑥2, ... , 𝑥𝑛 from the distribution
whose density is 𝑓 (𝑥) and approximate:

𝜇𝑔 ≡ 𝐸𝑔(𝑥) =
∫

𝑔(𝑥) 𝑓 (𝑥)𝑑𝑥 ≈ 1
𝑛

𝑛∑︁
𝑖=1

𝑔(𝑥𝑖) ≡ 𝜇𝑔

• Its variance:

𝜎2
𝜇𝑔

=
1
𝑛

∫
(𝑔(𝑥) − 𝜇𝑔)2𝑑𝑥 =

𝜎2
𝑔

𝑛

where 𝜎2
𝑔 is estimated by:

𝜎̂2
𝑔 =

1
𝑛 − 1

𝑛∑︁
𝑖=1
(𝑔(𝑥𝑖) − 𝜇𝑔)2

87 / 100

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Pseudo-Random Numbers

• MC methods rely on random numbers

• Random numbers cannot be generated by computers

• Instead, computers generate pseudo-random numbers that
look random numbers

• All these numbers are generated with deterministic algorithms

• Advantage: no need to store the obtained random numbers
and replication is easy by setting the same seed

88 / 100

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Generate Pseudo-Random Numbers

• Most numerical software packages provide pseudo-random
number geneators from uniform and normal distributions

• For others, use the inverse CDF method:

For a CDF 𝐹 and a 𝑈 ∼ 𝑈 (0, 1), 𝑋 = 𝐹−1(𝑈) has the same
CDF 𝐹

• To generate a pseudo-random sample 𝑥1, 𝑥2, ... , 𝑥𝑛 from the
distribution 𝐹, generate a pseudo-random sample 𝑢1, 𝑢2, ... , 𝑢𝑛
from 𝑈 (0, 1) and set 𝑥𝑖 = 𝐹−1(𝑢𝑖)

• Check out numpy.random

89 / 100

https://docs.scipy.org/doc/numpy-1.14.0/reference/routines.random.html

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

MC Integration: Practical Techniques

• The crude way that we saw is unbiased

• But, there is a scope for reducing its variance (while retaining
its unbiasedness)

• Several such techniques:
• Stratified sampling
• Importance sampling
• Antithetic variates
• Control variates
• Quasi-Monte Carlo

90 / 100

e.g.) MC Integration vs. Gaussian

• Now, compute E[(𝑥9 − 𝑥2 + 𝑥)] with 𝑥 ∼ 𝑁 (0, 0.01)

• Gauss-Hermite formula is used: Use
scipy.special.roots hermite for obtaining Gauss-Hermite
nodes and weghts.

Method n 2n-1 Approximation Computation time (sec.)
Gaussian 3 5 -0.009999999999999998 0.001789
Gaussian 4 7 -0.010000000000000002 0.002563
Gaussian 5 9 -0.01 0.001547

MC 102 -0.0018134 0.0029
MC 103 -0.0057573 0.0035
MC 104 -0.0089993 0.0176
MC 105 -0.0094415 0.117
MC 106 -0.0099246 1.346
MC 107 -0.0100042 7.515
MC 108 -0.010006 26.481

Heiss and Winschel (2008) Sparse Grids Integration

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Further Readings

• Judd, Chapter 7

• Collard, Lecture Notes 4

• Note by Skrainka and Judd

93 / 100

https://web.archive.org/web/20160212155918/http://ice.uchicago.edu/2012_presentations/Faculty/Skrainka/QuadShort-SummerECTA.pdf

Lab

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Exercise
Task 1.

• Numerically compute
∫ 2
0 𝑒𝑥𝑑𝑥 by:

(a) Midpoint, (b) Trapezoid, (c) Simpson’s, (d) Gaussian, and (e) Monte
Carlo (the crude way) (Set a seed by np.random.seed(1))

• Feel free to use SciPy integration package for some methods
• Write a program for getting how many 𝑛 we need by (a)–(c) and (e) to

achieve the approximation error < 10−6

• Compare the computation time of (d) to (a)-(c) and (e) (with the
obtained 𝑛)

Task 2.
• Compute

∫ 2
0

∫ 2
0 𝑒𝑥𝑒𝑦𝑑𝑥𝑑𝑦 (with a general-purpose function)

• Use (a) One of Newton-Cotes formulas (b) Monte Carlo (the crude way)
(Set seeds by np.random.seed(1) for 𝑥 & by np.random.seed(2) for 𝑦)

• Try 𝑛 = 10𝑘 with 𝑘 = 1, ... , 7
• Check errors and computation times

95 / 100

https://docs.scipy.org/doc/scipy/reference/tutorial/integrate.html

Assignment 6

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Intertemporal Decision under Interest Rate Uncertainty
• Recall the setting and experiment in Assignment 4.
• Assume that the subjects now solve:

E𝑈 (𝑐𝑡 , 𝑐𝑡+𝑘) = 𝑐𝛼𝑡 + 𝛽1l𝑡=0𝛿𝑘E[𝑐𝛼
𝑡+𝑘]

s.t. 𝑃𝑐𝑡 + 𝑐𝑡+𝑘 = 4000
𝑃 = 𝑃 + 𝜖, 𝜖 ∼ 𝑁 (0, 0.01)

• Now, there is an interest rate uncertainty.
• Euler equation:

𝛽1l𝑡=0𝛿𝑘E

[(
4000 − 𝑃𝑐𝑡

𝑐𝑡

) (𝛼−1)
𝑃

]
− 1 = 0

• Parameters: 𝛽: present biasness, 𝛿: discount factor, 𝛼: curvature
(𝐼𝐸𝑆 = 1/(1 − 𝛼)).

• Data: 𝑤𝑖,𝑞 ≡ {𝑐𝑖,𝑡𝑞 , 𝑡𝑞 , 𝑘𝑞 , 𝑃𝑞} (𝑖: individual; 𝑞: question)
Note. Use the newly distributed data, which is different from the data you

have used in the previous assignments.
97 / 100

Assignment
Aim. Get accustomed to several numerical intergation methods and experience

computational burdens.
Task. Given 𝑤𝑖,𝑞, obtain parameter values 𝜃 = (𝛽, 𝛿, 𝛼̂) which minimize the

following function:

𝑄𝑁 (𝜃) =
∑︁
𝑖,𝑞

[
𝛽1l𝑡𝑞=0𝛿𝑘𝑞E

[(4000 − 𝑃𝑞𝑐𝑖,𝑡𝑞

𝑐𝑖,𝑡𝑞

) (𝛼−1)
𝑃𝑞

]
− 1

]2

by searching over 18000 grid points:
𝛽 ∈ [0.7, 1] × 𝛿 ∈ [0.8, 1] × 𝛼 ∈ [0.5, 0.8] with interval size 0.01.

• For computing the expectation part, use the following methods:
(a) Monte Carlo (the crude way): Try 100 and 1000 for the number

of draws (with grid search). Also, try > 1000 (with Nelder-Mead).
(b) Gauss-Hermite: Use scipy.special.roots hermite for

obtaining Gauss-Hermite nodes and weghts.
• Optional 1 Use parallel processing for your grid search process.
• Optional 2 Simulate a data using the obtained parameters and

re-estimate the parameters with the simulated data.

Final Project

Numerical Differentiation Lab Assignment 5 Numerical Integration Lab Assignment 6 Final Project

Final Project

• We have learnt a basic comprehensive set of scientific computation and
numerical methods.

• Pick an economic model that interests you from what you have learnt in
your first-year courses.

• Develop a library to robustlly do one or more of the following:
• Solve the model
• Simulate data from the model
• Estimate the model

• Optional Develop unit tests to validate your library.
• Group work up to among 2-3 students is allowed. In this case, collaborate

together sharing a same private repository.
• Please submit a one-page pdf proposal summarizing the model and other

mathematical details (due will be announced in class).
You should submit a PDF write-up of your summary and your codes via
GitHub.

100 / 100

	Numerical Differentiation
	Lab
	Assignment 5
	Numerical Integration
	Lab
	Assignment 6
	Final Project

