Numerical Differentiation

& Integration

Differentiation and integration are two basic operations
in scientific computation and a lot of economic
applications. For example:

e Optimization and non-linear equation solving
(gradients, Hessians, Jacobians)

e Differential equations

e Computing expectations given some probability
distributions (integration)

e Computing consumer surplus (integration)

e Statistics and econometrics

2/100

Numerical Differentiation

Numerical Differentiation

Why Do We Need Numerical Differentiation?

® Any “approximation” involves errors.

4/100

Numerical Differentiation

Why Do We Need Numerical Differentiation?

® Any “approximation” involves errors.

® From the standpoint of computational accuracy and time (by
computer), obtaining derivatives analytically should be the first
priority.

5/100

Numerical Differentiation

Why Do We Need Numerical Differentiation?

® Any “approximation” involves errors.

® From the standpoint of computational accuracy and time (by
computer), obtaining derivatives analytically should be the first
priority.

® However, we encounter situations where the explicit form of a
function, whose derivative is of our interest, is unknown (e.g.,
simulated method of moments).

6 /100

Numerical Differentiation

Why Do We Need Numerical Differentiation?

® Any “approximation” involves errors.

® From the standpoint of computational accuracy and time (by
computer), obtaining derivatives analytically should be the first
priority.

® However, we encounter situations where the explicit form of a
function, whose derivative is of our interest, is unknown (e.g.,
simulated method of moments).

e Even if it is possible to obtain derivatives analytically, it might
be extremely time consuming in some cases.

e Also, numerical differentiation helps us to check errors of
analytical computations by hand (e.g., deriving theoretical
predictions for signs).

7/100

Numerical Differentiation
Overview

e Direct approach (Forward/Backward difference)

Central difference

Partial derivatives

Higher-order and cross derivatives

Other methods:

® Three-point approximations
® Richardson extrapolation

8/100

Numerical Differentiation

Direct Approach (Forward Difference)

® Derivative of a function:

P =t A0 =)

Ax—0 AX

9/100

Numerical Differentiation

Direct Approach (Forward Difference)

® Derivative of a function:

P =t A0 =)

Ax—0 AX

e A natural approximation (“forward difference”):

Jx+h) - fx)
h

f'(x) =

for some small & > 0.

10/100

Numerical Differentiation

Direct Approach (Forward Difference)

® Derivative of a function:

P =t A0 =)

Ax—0 AX

e A natural approximation (“forward difference”):

Jx+h) - fx)

f x

for some small & > 0.

¢ How small should & be?
The smaller, the more precise?

11,100

Q
O
=
(]
—
e
=
()
e
—
Q)
P
-
(@)
LL
[}
e
)
(U
(@)
=
.9
)
T
—
)
)
=

flath)—f(@)
h

P =

3

f)

Numerical lllustration of the Forward Difference

h=15
6 h=1
. B=0.5 -

——- h=01 [

f(X)x-0=€"=1

—_— flx)=eX

-2.0 -1.5 -1.0 -05 0.0 0.5 1.0 1.5 2.0

fix)=eX

0.5 1.0 15 20

fix)=eX

— flx)=e*
—— h=1071

——— h=10"5

0.5

1.0

1.5

2.0

f(x) = eX

— fix)=e*
—— h=10"1

- h=10"°

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

1.5 2.0

1.0

0.5

-0.5

-1.0

-1.5

W\
x = oo o9 Ny
o oL W\

o O O o v%
[e %,
| ',/7
D S R ///

e ,//
| |10 \

I 1

©o

x® = (X}

-2.0

=eX
1071

— f(x)
—h
- h

107>

10—10
10—15
10720

h
- h
— h

1.5 2.0

1.0

0.5

-0.5

-1.0

-1.5

6

-2.0

Too Small & Lose Precision!

f(x) = eX
75y True f(x)
\ —— Forward Difference Approximation
1.50{ |
\\
\
1.25 \
\\ , '\‘
- 1.00 ‘
L} |
= \
= \
¥ 0.75 \
\
\
\
0.50 \
|
\
0.25 \‘
\
\
|
0.00 —
0.0 25 5.0 7.5 10.0 12.5 15.0 17.5
—logioh

20.0

Numerical Differentiation
Round-off & Truncation Errors

® Define:

® l:f = InaXge[x,x+h) |f(§)|
® f(x): computed value of f(x)
® ¢: machine precision such that:

|f(x) - f(x)| < €Ly Vx

20 /100

Numerical Differentiation
Round-off & Truncation Errors

® Define:

° l:f = maX§e[x,x+h] |f(é:)|

® f(x): computed value of f(x)

® ¢: machine precision such that:
FO) = fO0l < eLy Vx

e Round-off error: |L (x+h})l_f 0 _f (x+h) / W < 26Lf

21/100

Numerical Differentiation
Round-off & Truncation Errors

® Define:

® l:f = InaXge[x,x+h) |f(§)|
® f(x): computed value of f(x)
® ¢: machine precision such that:

|f(x) = f()] < eLy Vx
(Lot _ farhof()) o 2Ly
h h = h

e Round-off error:

e Taylor expansion of f(x+ h) around h = 0:

f(x+h) :f(x)+f’(x)h+f"(€)h2 3ée[x,x+h] =

22/100

Numerical Differentiation
Round-off & Truncation Errors

® Define:

® l:f = InaXge[x,x+h) |f(§)|
® f(x): computed value of f(x)
® ¢: machine precision such that:

|f(x) - f(x)| < €Ly Vx

¢ Round-off error: |f (x+h})l_f w _f (x+h});f x) | < 26}6’0

e Taylor expansion of f(x+ h) around h = 0:

f(x+h) :f(x)+f’(x)h+f"(€)h2 3ée[x,x+h] =

¢ Truncation error: |f'(x) — WI < hTM

where M = maxge(xrn) | f7 ()]

23/100

Total Error is Non-Monotonic in h

Errors 1

Total error

Truncation error

Round-off error

[
I
1
1
1
|
|
1
!
T
1
1
I
1
|
1

v

I

Errors from the Previous Example

f(x) = eX

—o|

log1o|Total Error of f/(x)|x

—— Forward Difference

0.0 25 5.0 7.5 10.0 12.5 15.0 17.5 20.0
—logioh

Numerical Differentiation

Total Error is Non-Monotonic in &

e Total error is the sum of round-off and truncation errors.

26 /100

Numerical Differentiation

Total Error is Non-Monotonic in &

e Total error is the sum of round-off and truncation errors.

® Round-off error: decreasing in h
® Take differences and sums of floating-point numbers and
divide the result by a small number.
® Equivalent to multiplying the result by a large number.

® This multiplication magnifies any round-off errors in
numerators, which is larger with a smaller A.

27 /100

Numerical Differentiation

Total Error is Non-Monotonic in &

e Total error is the sum of round-off and truncation errors.

® Round-off error: decreasing in h
® Take differences and sums of floating-point numbers and
divide the result by a small number.
® Equivalent to multiplying the result by a large number.
® This multiplication magnifies any round-off errors in

numerators, which is larger with a smaller A.
® Truncation error: increasing in h

® Mathematical error in the approximation

® O(h) (the order of error is one)
O(h*): the sum of terms with kth and higher powers of h

28 /100

Numerical Differentiation

Optimal & Minimizes the Total Error

e Total error (= truncation + round-off errors):
: (e+h)—f 2eL _
|f(x)_f(x+11f(x)| €f+hM g(h)

Recall: Ly =maxge(x xin) [f(E)] & M = max ey, xan) | f7(E)]

e Optimal h: h* = argmin, g(h) =2 ELf

e |n practice, often set: h* = max(|x|, 1)Ve

29 /100

Numerical Differentiation

Backward Difference

Approximate f’(x) by:
f(x) - flx—h)
h

f'(x) =

Similar properties as the forward difference

When might we use this backward difference instead
of the forward difference?

Important to have a sense of functional shapes

30/100

Prefer Backward Difference When Left Derivative Matters

f@)-fla-h)
h

o | F@

ab----

R

Numerical Differentiation

Central Difference

® Approximate f’(x) by:

JGx+h) - fx—h)

O =

® Manipulate Taylor expansions:

Pl = =) = 2 (oo + L ED S @)

® Truncation error: |f’(x) — W| = 0(h?)

32/100

fa-feh fla+h)-f()
h

f@ 1 @

f(a+h)—f(a—h)
2h

I
1
1
1
1
|
|
|
|
|
|
|
|
1
|
1
1
1
|
1
1
I
|
|
1
|
|
|
|
!

[
v

h a a+h

Figure: Higher Accuracy by the Central Difference

Numerical Differentiation
Errors and Optimal &

|f(X+h)—f(x—h) f(X+h) f(x h)|
2h

e Round-off error:

e Truncation error: |f’(x) — f(x+h)2_hf(x_h)| < h26M
(L = maxgepenxrn |f ()] & M = maxgeen ey |fP (€)])
(X+h) f(x h) fo M
e Total error: |f'(x) — | < + 5
* 36Lf
[] =
"=
e In practice, set: h* = max(|x|, 1)Ve

34/100

Central Difference is More Accurate than Forward Difference

f(x) = eX

ol

logio|Total Error of f/(x)|x
|
()]

-10 —— Forward Difference

—— Central Difference

0.0 25 5.0 7.5 10.0 12.5 15.0 17.5 20.0
—logioh

Numerical Differentiation

Partial Derivatives

e f:R" >R
0

® ., =| 1 |« i'thelement
0

® |n the case of central difference,

Of(x) _ flx+eihi) — fx —eih)

2
o, o, +O(h)

36 /100

Numerical Differentiation

Trade-off b/w Accuracy & Efficiency

® The central difference is one order more accurate
than the preceeding one-sided (forward/backward)
difference.

® The tradeoff comes into play as we increase the
dimensionality of f.

e E.g.) Suppose we compute the Jacobian matrix of
f:R" — R™. How many functional evaluations are
required by the one-sided difference and by the
central difference?

37/100

Numerical Differentiation

Trade-off b/w Accuracy & Efficiency

® The central difference is one order more accurate
than the preceeding one-sided (forward/backward)
difference.

® The tradeoff comes into play as we increase the
dimensionality of f.

e E.g.) Suppose we compute the Jacobian matrix of
f:R" — R™. How many functional evaluations are
required by the one-sided difference and by the
central difference?

The central difference takes approximately twice as
long to compute when n is large.

38/100

Numerical Differentiation

Higher-Order & Cross Derivatives

e f:R'" >R
® |n the case of central difference,
3% f (%) _ Sreih) —2f (X) + f (x—eihi) oY
ax? hl2
62f (x) _ f (X +h,’ei +hje_,>) - f (x+h,-ei - h_,’@j) —f (x - hiei +h_/e_,-) +f (x - hie,- - hjej)
oxj0x; dhih;
+O(h*)

where O (h*) part is proportional to ht.2h12. for the cross derivative

(Derive them by yourself!)

* In practice, set: i = max(|x|, 1)Ve

o Numerical differentiation accumulates errors for
higher-order derivatives.

39/100

Three-point Approximation

Aproximate the derivative with a weighted sum of evaluated values of the
function at 3 points:

ffx)~af(x)+bf(x+h)+cf(x+Ah)
Use Taylor expansions for f(x + &) and f(x + Ah) around x to obtain:

af(x)+bf(x+h)+cf(x+ah)
=(a+b+c)f(x)+h(b+cd)f'(x)
2 (b +) f7 () + B Thf P (E) + ea7 O (£)]

Obtain the coefficients by solving:

a+b+c=0
b+cd=1/h
b+cl?>=0

Error: O(h?)

Richardson extrapolation

® In some approximation procedures, one first decides a step size
h and then generates an approximation A (%) to some desired
quantity A.

e |dea: Generate a better approximation (i.e., with a higher
order error) from multiple lower order approximations.

® See Collard’s lecture note 4 for detail.

Numerical Differentiation
Further Readings

e Judd, Chapter 7
e (Collard, Lecture Notes 4

® Miranda & Fackler, Chapter 5

42 /100

Lab

Exercise

Aim.

Understand the importance of round-off errors arising from
floating point numbers. Compare the accuracy between
different methods

Let f(x) =sinx
Then, f/(x) = cosx and f/(0.5) = 0.8775825619

Approximate f’(0.5) by forward and central differences
Try h=10"% for k =1,2,...,20

Plot logo(total errors) by the two methods in the same figure,
with —log;y(h) in the horizontal axis. Submit your plot.

44 /100

Assignment 5

Setting: Quasi-hyperbolic discounting structure

® An application to a simple structural model
® Time preferences play important roles for various dynamic decisions.

® Not only discount factor, but also present biasness matters.
e.g.) | do not want to do my homework just now, so | allocate much
more study time to tomorrow. The ratio of study time between today
and a future day can differ from the planned ratio between two future
days with an equal interval.

® An individual at period r maximizes lifetime utility:
Ule) =u(e) +B). 6*ulcrer)
k=1

® Read Andreoni and Sprenger (2012 AER), Augenblick et al. (2015 QJE),
and Casaburi and Macchiavello (2019 AER) if you are interested, but not
necessary for this assignment.

46 /100

Assignment 5
Experiment & Data Generating Process

® A researcher conducts a lab experiment in India for obtaining time
preference parameters.

® Subjects are asked to choose two-period intertemporal allocations of
money (Rs. 4000) within a convex budget set, with various 7 (earlier
date), k (time interval between th earlier and later dates), and several
interest rates P = (1 +7r).

® Assume that the subjects solve:
Ulercrm) = e + plogkea
s.t. Pct + Ciyk = 4000
® Solving this,
_ 4000
a (lgllt:o(skp)l/(l—a) +P

cr = g(ly=0, k, P; 8,6,)

® Parameters: B: present biasness, ¢: discount factor, a: curvature
(IES=1/(1-a)).

* Distributed data: w; , = {cir, Cit ks tg> kg» Py}
(i: individual, g: question) 47100

Assignment 5
Assignm

Aim.

Task.

Experience that numerical differentiation might affect a researcher’s
conclusion significantly.

In the previous assignment, you have estimated the parameters
0 = (B, 6, @) by non-linear least squares (NLLS), as an M-estimator, a
class of extremum estimators:

2|
max 3§ = [eig, = 8 (L0 kg Pyi.6,0)]?) = max 3 m(wi50)
proa i.q i.q
Given w; 4 & 6 (that we estimated), numerically compute standard errors
and 95% confidence intervals of 6.

For computing s(w; 4;6), the score function, analytically derive it and
substitute parameter estimates and data into it.

Obtain H(w; 4;0), Hessian of m(w; 4;6), by the following ways:
1. Directly apply 2nd-order numerical differentiations to m(w; 4; 0).
2. Apply 1st-order numerical differentiations to s(wj 4; 6), i.e., numerically
compute the Jacobian of s(w; 4; 0).
3. Analytically derive the consistent estimate of E[H (w; 4; 6p)] and substitute
parameter estimates and data into it

48 /100

Assignment 5
Hints

® For numerical differentiation, use a hand-made central difference method
or numdifftools.

® For analytical derivations, do them by hand or by SymPy.

® Assume that conditions in Propositions 7.3 (or 7.4) and 7.8 in the
Hayashi textbook are satisfied.

® Therefore, use the result of asymptotic normality of M-estimators and the
consistent asymptotic variance estimation:

Avar@ = {3 HOovg0) 8] Hwg: o)
i.q i,q

where £= 4 Yig SWigs 6)s(wi 4;8)" (N: total observation),

_ Om(wi.q;6) _ 0%m(wiq;0)
s(wig;0) = a6 H(wig;0) = —5554

Review also Chap 7 of Hayashi's textbook or the handbook chapter Newey &
McFadden (1994)

49 /100

https://pypi.org/project/numdifftools/
https://www.sympy.org/en/index.html

Numerical Integration

Numerical Integration
Quadrature Problem: Big Picture

e Compute fD f(x)dx where f : R" — R is an integrable
function over the domain D Cc R.

® However, most integrals cannot be evaluated analytically.

51 /100

Numerical Integration
Quadrature Problem: Big Picture

e Compute fD f(x)dx where f : R" — R is an integrable
function over the domain D Cc R.

® However, most integrals cannot be evaluated analytically.

® Use a finite number of evaluations of the integrand f and a
weighted sum of those values to approximate:

Jp F)dx ~ Tpey w(n) f(xn).

® This is necessary because it is infeasible to evaluate f(x) for
all x € D; |D| = co.

52/100

Numerical Integration
Quadrature Problem: Big Picture

e Compute fD f(x)dx where f : R" — R is an integrable
function over the domain D Cc R.

® However, most integrals cannot be evaluated analytically.

® Use a finite number of evaluations of the integrand f and a
weighted sum of those values to approximate:

Jp F)dx ~ Tpey w(n) f(xn).

® This is necessary because it is infeasible to evaluate f(x) for
all x € D; |D| = co.

® Select the efficient method among several alternatives for
improving running times and keeping accuracy.

® Methods differ in how to choose:

® N: nodes at which the integrand is evaluated
® w(n): weight assigned to each function evaluation
53/100

Numerical Integration
Overview

® Newton-Cotes formulas

® Mid-point rule
® Trapezoid rule
® Simpson rule

® Brief intro to interpolation methods
® Adaptive quadrature

® Infinite integration domain

® Gaussian formulas

¢ Multidimensional quadrature

® Monte Carlo integration

e SciPy integration package (tutorial)

54 /100

https://docs.scipy.org/doc/scipy/reference/integrate.html
https://docs.scipy.org/doc/scipy/reference/tutorial/integrate.html

Numerical Integration

Newton-Cotes formulas: Overview

® {x;}!_;: a partition of [a,b] CR
b : n—
J fa f(x)dx = limy e 207" (&) (Xir1 — X;)
where &; € [x;, Xi41]

e General workflow of Newton-Cotes formulas:
® Split the interval into small subintervals

® Approximate f by a polynomial on each subinterval
® Integrate this polynomial rather than f

® Add together the contributions from each subinterval

55 /100

Q2
3
o
i)
=
(@)
(oN
=
=
—
o
3
=
—
(®)
LL
0
[}
=
(@)
b
c
(©)
+
=
Q
=

h
—

»r

P R

f()

Numerical Integration
Midpoint Rule

® The simplest method: just interpolate the constant function
value at the middle point on each interval

b n
/ fx)dx=nh Z f(x;) + Error
“ i=1

WherehEb%a &xiEa+(i—%)h
e |Error| < (b - a)g—zM where M = maxye[qp] | f”(%)]

e Quadratic convergence for f € C?:
Halve the interval width = Reduce the error by ~75%

57/100

Newton-Cotes Formula 2: Trapezoid Rule

f(x) »r

[~

R ¥

Trapezoid Rule

e Approximte f on each interval with the secant that
interpolates f at both ends of the interval

‘/ab f(x)dx

+ Error

L)+ f Gi)
D

(M Zf(x,+1) + Error

wherehEb%&xiEa+(i—1)h

2 144
® |Error| < (b - a)%M where M = max,e(qp) | f"(x)]
(Derive this by yourself!)

e Gained nothing (at the maximum errors) by approximating f
by a linear function instead of a constant!
i.e., Despite more functional evaluations than the midpoint
rule, there is no accuracy gain!

Too Coarse with Whichever Rule

f® 1

/_\ Midpoint rule

Trapezoid rule

R ¥

i+1

Newton-Cotes Formula 3: Simpson’s Rule

fx) ¢

fx)

Xi X+ Xiv1 x

Numerical Integration
Simpson's Rule: Motivation

e Circumvent the inefficiencies of the midpoint/trapezoid rules

® Use a piecewise quadratic interpolant of f which uses the
values of f at x;, xj41, and 5= fori=1,...,n

® Need interpolation, one type of function approximation
problems

62 /100

Numerical Integration
Function Approximation Methods

® In many situations, we need to approximate functions because
in many cases:

® Computing values of a function at all points is not
possible (as we saw just now!)

® Functional forms are unknown but only a few points are
observed

® In both cases, compute or use values of a function at only a
few points and guess its values elsewhere

¢ Interpolation: any procedure that finds a “nice” function
that goes through a collection of prescribed points

® The simplest one is linear interpolation, which we've already
used in the trapezoid rule

® For other approximation methods, read Judd, Chap 6

63 /100

Lagrange Interpolation

Take a collection of n points in R?, D = {(x;, y;))|i = 1, ...,n}
(data)

Then, find a degree n — 1 polynomial, p(x) s.t. y; = p(x;),
i=1,....n

Define: [;(x) = 14 =

Xi=Xj
Notice: [;(x) =1ifx=x; & [;(x) =0ifx =x; for j #1i

Therefore, p(x) = X', yili(x) interpolates the data, i.e.,
yi = p(x;) Vi

In the case of Simpson’s rule, n = 3 and thus this becomes a
quadratic interpolant

For other interpolation methods, read Judd, Chap 6

Numerical Integration

Simpson's Rule on [x;, Xj41]

® Using the Lagrange interpolation,

Xi+l
+ Error

f(x)ds =(’%) [f(xi) + 4f(’%) + (i)

Xi

L _y)B
¢ |Error| < % MAXxe[x;xi1] f(4) (x)

65 /100

Numerical Integration
Simpson's Rule with Intervals

® ;. an even number of intervals

Using the Lagrange interpolation and the previous result,

b
/ S (x)dx = g[f (x1) +4f (x2) +2f (x3) +4f (x4) + - - - +4f (xp) + f (xn+1)] + Error
where h = b% &xi=a+(-1)h

|Error| < h4§l§6a) maxye[q.p) £V (x) (4th-order convergence)

Halve the interval width = Reduce the error by ~93.75%

With this asymptotically smaller error, Simpson's rule is a very
popular method

66 /100

Choice of h Matters A Lot!

f® 1

f(x) Simpson's rule

Jrapezoid rule

=

R ¥

i i1 i+1

Choice of h Matters A Lot!

f® 1

f() :
Trapezoid rule
'Simpson'g rul
|
i
i Fitin Xis Yisp X

2

Numerical Integration
Adaptive Quadrature

® Truncation error matters, while numerical integration is very
insensitive to round-off errors

e But, too small & has a computational burden

69 /100

Numerical Integration
Adaptive Quadrature

® Truncation error matters, while numerical integration is very
insensitive to round-off errors

e But, too small & has a computational burden

® |dea: increase the number of nodes until the sequence of
estimates of the integral converges.

® Recommended especially when the functional shape is unclear

70 /100

Numerical Integration
Adaptive Quadrature

® Truncation error matters, while numerical integration is very
insensitive to round-off errors

e But, too small & has a computational burden

® |dea: increase the number of nodes until the sequence of
estimates of the integral converges.

® Recommended especially when the functional shape is unclear

® One simple way: double the number of intervals with each
operation.

71/100

Numerical Integration
Adaptive Quadrature

® Truncation error matters, while numerical integration is very
insensitive to round-off errors

e But, too small & has a computational burden

® |dea: increase the number of nodes until the sequence of
estimates of the integral converges.

® Recommended especially when the functional shape is unclear

® One simple way: double the number of intervals with each
operation.

® More sophisticated way: concentrate new evaluation points in
those areas where the integrand appears to be most irregular.

72/100

Numerical Integration
Infinite Integration Domains

® How to approximate fooo f(x)dx?
(Restrict to the cases where /000 S (x)dx exists)

° /Ooo f(x)dx =1limp e /Ob f(x)dx = /Ob f(x)dx with a very
large b is not a good idea: too time consuming

® Transform it to the finite integration domain by using:

b ¢~ (b)
/ Fx)dx = / F(O() (2)dz
a ¢~ 1(a)

where ¢ : R — R, increasing, and C' on [a, b]

E.g.) /Ooof(x)dx /Olf(li_z)u _)24

/ : f () /0 (w)iz - 91 e

73/100

Numerical Integration

Newton-Cotes Formulas: Example

—x2+x
x?=x2+x

Table: Approximations which achieve errors <1076

Object /01 (=x2 + x)dx 01 (x9 —=xZ + x)dx
Method Midpoint Trapezoid Simpson's Midpoint Trapezoid Simpson's
n 289 410 2 541 764 42
Computation time (sec.) 0.000271 6.13E-05 0.000122 0.000684 0.000138 0.00012

Available SciPy functions: scipy.integrate.trapz & scipy.integrate.simps
74 /100

Numerical Integration
Gaussian Quadrature: Motivation

® (Recall) Newton-Cotes formulas: /ab Fx)dx ~ X w;i f(xi)
for some arbitrary nodes {x;} € [a, b] and weights {w;}

i.e., N-C formulas attempt to approximate the given function directly on

subintervals using polynomials

® Are there more efficient choices of nodes and weights?

75/100

Numerical Integration
Gaussian Quadrature: Motivation

® (Recall) Newton-Cotes formulas: /ab Fx)dx ~ X w;i f(xi)
for some arbitrary nodes {x;} € [a, b] and weights {w;}

i.e., N-C formulas attempt to approximate the given function directly on
subintervals using polynomials

® Are there more efficient choices of nodes and weights?

® |dea: Gaussian approach finds nodes {x;} and weights {w;} to
achieve the better approximation

® Given a nonnegative weighting function w(x), Gaussian
quadrature computes the following approximation:

/ ewds = Y wrf)
a i=1

for some nodes x; € [a, b] and positive weights w;

76 /100

Numerical Integration
Gaussian Quadrature: Intuition

® [Exact integration for a finite-dimensional collection of
functions: Choose weights and nodes such that the
approximation is exactly correct if f is a polynomial of the
given order

® Gaussian quadrature accomplishes this for spaces of degree
2n — 1 polynomials using n nodes and n weights:

Given a nonnegative weighting function w(x), we can find n

points {x;}!_; C [a,b] and n nonnegative weights {w;}!; s.t.

b n
[remwa=Y airt) v e
a i=1

77/100

THEOREM

Suppose

1. {gok(x)}:’zo: an orthonormal family of polynomials w.r.t. w(x)
on [a,b]

2. g st @r(x) =qpxk+- -
3. x;,i=1,...,n: nroots of ¢,(x) s.t. x; <x9-: <Xy

Gn+1/49n

4 O = = o)

Then
(i) a<x;<x9-+<x,<b

(ii) If fis c@m on [a, b], then
[F@w@)dr = Ty wif (i) + 528 3¢ € [a,b]

(i) [°fOw)dx = S wif () Y f € Fonct

Numerical Integration
Gaussian Quadrature: Implementation

® The theorem tells us how to compute the necessary nodes {x;}
and weights {w;}

SciPy integration package contains modules computing them.

¢ Or, follow some specific Gaussian formulas:

Formula Domain Weight
Gauss-Chebyshev [-1,1] w(x) = (1 —x2)"2
Gauss-Legendre [-1,1] w(x) =1
Gauss-Hermite [0, 0] wi(x) = e’
Gauss-Laguerre [0, o] w(x) =e™

Their nodes and weights are available in tables (e.g., in Judd, Section
7.2), in online data files (e.g., this), and in standard software packages
and libraries (e.g., scipy.special).

79/100

https://docs.scipy.org/doc/scipy/reference/tutorial/integrate.html
https://keisan.casio.com/exec/system/1329114617
https://docs.scipy.org/doc/scipy/reference/special.html

Gaussian Quadrature: E.g. with scipy.integrate.fixed quad

o
N
< /
LI /
% //
02] /7////
Again, compute /01 (x% = x2 + x)dx
n 2n-1 Approximation Error Computation time (sec.)
1 1 0.2519531 0.014714 0.000693
2 3 0.2256944 0.040972 0.00105
3 5 0.2622292 0.004438 0.000316
4 7 0.2665646 0.000102 0.000597
5 9 0.2666667 1.11E-16 0.000327

Recall: 541, 764, and 42 draws were needed to achieve errors < 1076 for the same function by
midpoint, trapezoid, and Simpson'’s rules, respectively!

Gauss-Chebyshev

e Formula:

1 RPN A0
[1 (1 —x)2dx = n ; flxi) + 22n-1 " (2p)!

for some & € [-1, 1] where x; = 008(2’2 17r)

® Letting y = (x a) -1,
b 1
b-a 1
/ fodx = —— /1 g (L -yH)2dy
a —

where g(y) = f(a + wg"“))(l —y2)3

Gauss-Legendre

e Formula:

1 n n+ (2n)
[, =Y wf o+ 2))
- i=1

Cn+D!2n)! (2n)!

for some ¢ € [-1,1]
® Uses a similar way of domain conversion from [a, b]

® Exponential convergence to the true value

® Formula:

© e ¥ AR £ (&)
[rwe dw= Yo+t S

for some & € (—o0, 00)

® Useful for many economics application because normally
distributed random variables are often used.

o Letx ~N(u,0%) & y=2£. Then,

V2o

2

(27r02)_%/ f(x)e 202) dx
ﬂ_%/mf(\/ﬁo'yﬂu)e_y dy

(o)

E[f(x0)]

* In(x) ~ N(u,0?) is also often used. In what situations?

Gauss-Laguerre

e Formula:

o Ll (n)? ()
/0 f(x)e ™ dx = lzzl w; f(x;) + @n+D)l(2n)! (2n)!

for some & € [0, o)

e Useful for computing the discounted sum of payoffs in an
infinite horizon problem

® Eg)

f)eutewa= [T eufe(3)) Zar= %wa(y;)

where y=pt & f=uoc

Numerical Integration
Multidimensional Quadrature

¢ One way: Product rule
® Approximate: ‘/:11 . -fal;d f(x1, .., xg)dxy - - - dxg

1 1
® by: le 1 sz 1w, ---wif(xil,...,xil)
® Apply either Newton-Cotes or Gaussian formulas.

e Curse of dimensionality: with n nodes in each direction for a
d-dimensional problem, n? functional evaluations are needed.

® Alternatives for high dimensional problems:

® Monte Carlo Integration
® Sparse grids: Heiss and Winschel 2008 (web)

85 /100

https://www.sciencedirect.com/science/article/pii/S0304407607002552
http://www.sparse-grids.de/

Numerical Integration

Monte Carlo (MC) Integration: Overview

® Based on the law of large number and the central limit theorem
® Any result is a random variable

® Put a structure on the error which has a probabilistic
distribution

® Therefore, we need to present both the estimate of integral
and the estimate of its variance or standard error

® Useful for high-dimensional problems

® Robust and simple

86 /100

Numerical Integration

MC Integration: A Crude Way

® Draw a random sample x1, X9, ..., x, from the distribution
whose density is f(x) and approximate:

e = Eg) = [g fde~ 1Y 80 = i
i=1

® |ts variance:

2
1 o
2 _ 1 N2 8
Ty =~ / (8(x) = pg)ex = —
where o2 is estimated by:

8
1 &

A2 _ - N)2

g—n_1i§:1(g(xt) Ag)

87 /100

Numerical Integration
Pseudo-Random Numbers

¢ MC methods rely on random numbers
® Random numbers cannot be generated by computers

® Instead, computers generate pseudo-random numbers that
look random numbers

® All these numbers are generated with deterministic algorithms

e Advantage: no need to store the obtained random numbers
and replication is easy by setting the same seed

88 /100

Numerical Integration
Generate Pseudo-Random Numbers

® Most numerical software packages provide pseudo-random
number geneators from uniform and normal distributions

® For others, use the inverse CDF method:

For a CDF F and a U ~ U(0,1), X = F~1(U) has the same
CDF F

e To generate a pseudo-random sample x1, xo, ..., x,, from the
distribution F, generate a pseudo-random sample uy, uo, ..., u,
from U(0,1) and set x; = F~(u;)

® Check out numpy.random

89 /100

https://docs.scipy.org/doc/numpy-1.14.0/reference/routines.random.html

Numerical Integration
MC Integration: Practical Techniques

® The crude way that we saw is unbiased

e But, there is a scope for reducing its variance (while retaining
its unbiasedness)

® Several such techniques:

Stratified sampling
Importance sampling
Antithetic variates
Control variates
Quasi-Monte Carlo

90 /100

e.g.) MC Integration vs. Gaussian

e Now, compute E[(x? — x2 + x)] with x ~ N(0,0.01)

® Gauss-Hermite formula is used: Use
scipy.special.roots_hermite for obtaining Gauss-Hermite
nodes and weghts.

Method n 2n-1 Approximation Computation time (sec.)
Gaussian 3 5 -0.009999999999999998 0.001789
Gaussian 4 7 -0.010000000000000002 0.002563
Gaussian 5 9 -0.01 0.001547

MC 102 -0.0018134 0.0029

MC 102 -0.0057573 0.0035

MC 104 -0.0089993 0.0176

MC 10° -0.0094415 0.117

MC 106 -0.0099246 1.346

MC 107 -0.0100042 7.515

MC 108 -0.010006 26.481

Heiss and Winschel (2008) Sparse Grids Integration

Product rule:

L‘m\un{.llu nodes X, eX,
X, X,
,® X (, ® \
® ,'f.] .‘.’__ @i X 5 Sp:iiw grid:
f.."@ X,

J

Fig. 1. Construction of the sparse grid in two dimensions.

Numerical Integration
Further Readings

e Judd, Chapter 7
e (Collard, Lecture Notes 4

® Note by Skrainka and Judd

93/100

https://web.archive.org/web/20160212155918/http://ice.uchicago.edu/2012_presentations/Faculty/Skrainka/QuadShort-SummerECTA.pdf

Lab

Exercise

Task 1.

Task 2.

Numerically compute f02 e*dx by:

(a) Midpoint, (b) Trapezoid, (c) Simpson's, (d) Gaussian, and (e) Monte
Carlo (the crude way) (Set a seed by np.random.seed(1))

Feel free to use SciPy integration package for some methods

Write a program for getting how many n we need by (a)—(c) and (e) to
achieve the approximation error < 1076

Compare the computation time of (d) to (a)-(c) and (e) (with the
obtained n)

Compute /02 f02 e*eYdxdy (with a general-purpose function)

Use (a) One of Newton-Cotes formulas (b) Monte Carlo (the crude way)
(Set seeds by np.random.seed (1) for x & by np.random.seed(2) for y)

Tryn= 10% with k=1,...,7

Check errors and computation times
95 /100

https://docs.scipy.org/doc/scipy/reference/tutorial/integrate.html

Assignment 6
Intertemporal Decision under Interest Rate Uncertainty

® Recall the setting and experiment in Assignment 4.
® Assume that the subjects now solve:
BU(cp, ciak) = cff + Bl06 B[,]
s.t. Pc; + ¢y = 4000
P=P+e, ¢ ~ N(0,0.01)
® Now, there is an interest rate uncertainty.

® Euler equation:

pl-oskE p

(4000—1%,)“"1) 1

Ct

® Parameters: B: present biasness, ¢: discount factor, a: curvature
(IES=1/(1-a)).

® Data: w4 ={ciy, tq> kg, Py} (it individual; g: question)

Note. Use the newly distributed data, which is different from the data you
have used in the previous assignments.
97 /100

Aim. Get accustomed to several numerical intergation methods and experience
computational burdens.

Task. Given w; 4, obtain parameter values 0= (,é, 5, &) which minimize the
following function:

4000 — Pc;, \(@ D) 2
o (0) Z[ﬁum_%kqﬁ[(M) r,- 1]

i,q City

by searching over 18000 grid points:
B [0.7,1] x6 € [0.8,1] X @ € [0.5,0.8] with interval size 0.01.

® For computing the expectation part, use the following methods:

(a) Monte Carlo (the crude way): Try 100 and 1000 for the number
of draws (with grid search). Also, try > 1000 (with Nelder-Mead).

(b) Gauss-Hermite: Use scipy.special.roots hermite for
obtaining Gauss-Hermite nodes and weghts.

® Optional 1 Use parallel processing for your grid search process.

® Optional 2 Simulate a data using the obtained parameters and
re-estimate the parameters with the simulated data.

Final Project

Final Project
Final Project

® \We have learnt a basic comprehensive set of scientific computation and
numerical methods.

® Pick an economic model that interests you from what you have learnt in
your first-year courses.

® Develop a library to robustlly do one or more of the following:

® Solve the model
® Simulate data from the model
® FEstimate the model

® Optional Develop unit tests to validate your library.

® Group work up to among 2-3 students is allowed. In this case, collaborate
together sharing a same private repository.

® Please submit a one-page pdf proposal summarizing the model and other
mathematical details (due will be announced in class).

You should submit a PDF write-up of your summary and your codes via
GitHub.

100 /100

	Numerical Differentiation
	Lab
	Assignment 5
	Numerical Integration
	Lab
	Assignment 6
	Final Project

