Nonlinear-Equation Solving
& Numerical Optlmlzatlon

Introduction

® Many economic or econometric problems do not have
closed-form solutions.

® Two types of problems to numerically solve:

(1) Solving a set of equations
(2) Maximizing or minimizing an objective function

2/124

Introduction

® Many economic or econometric problems do not have
closed-form solutions.

® Two types of problems to numerically solve:
(1) Solving a set of equations
(2) Maximizing or minimizing an objective function
® Prioritize (1) and avoid (2) whenever possible, because
numerical optimization is costly in terms of:
(i) Computational time
(ii) Risk of missing the exact solution
® However, there are also many situations where numerical

optimization is necessary for solving problems.

3/124

Motivating Eg. from Applied Microeconomics

BLP random coefficient logit demand models

“BLP": Berry, Levinsohn, and Pakes (1995 ECTA)
“Automobile prices in market equilibrium”

Influential research in industrial organization and widely
imported by other fields (trade, urban, education, health,
development, etc)

[llustrate the estimation of nonlinear models, where the
objective funciton may not be globally concave or convex

[llustrate the practicality of a wide range of numerical methods
(nonlinear equation solving; numerical optimization; numerical
differentiation; numerical integration)

To study BLP, let's first review the homogeneous logit (white board)

Recommended: Train “Discrete Choice Methods with Simulation”

4/124

https://eml.berkeley.edu/books/choice2.html

BLP RC-logit Demand Model: Setup

e Consumer i's utility from product j in market ¢:
Uijr = XjBi — ipji + &ji + Eiji
where

® pj:: price of product j in market ¢

® x;j: row vec. of non-price characteristics of j

® ¢ product- & market-specific demand shock
E[&j¢lpji,x;] # 0: endogeneity of prices

¢ Discrete choice model: Each consumer chooses one product
Jj €1,...,J in the market or an outside option j = 0 with
ujor = €ior, which maximizes his/her utility

5/124

BLP RC-logit Demand Model: Setup

e Consumer i's utility from product j in market ¢:
Uijr = XjBi — ipji + &ji + Eiji
where

® pj:: price of product j in market ¢

® x;j: row vec. of non-price characteristics of j

® ¢ product- & market-specific demand shock
E[&j¢lpji,x;] # 0: endogeneity of prices

¢ Discrete choice model: Each consumer chooses one product
jel,...,J in the market or an outside option j = 0 with
ujor = €ior, which maximizes his/her utility

® Sources of consumer heterogeneity:

® &ijr ~iia lype | extreme value distribution
* (@,Bi) ~N(uX)

6/124

BLP RC-logit Demand Model: Intuition

e Consumer heterogeneity in preferences over product
characteristics
= Flexible substitution patterns across products (compared to
the simple homogeneous logit)

® Product- & market-specific demand shock unobserved by the
econometrician
= Address endogeneity caused by this, employing Vs

e Estimate consumer demand of differentiated products (e.g.,
cars, cereals) using only widely available aggregate data at the
market level

7/124

BLP RC-logit Demand Model: Estimation

Step 0 Guess parameter values
Step 1 Define a function that, given &;;, predicts market share:
§ exp(x;Bi —aipji +&j1)
" 2k exp(Xx Bk — Ak Prs + Exe)
by numerical integration

Step 2 Solve for {&;}
s.t. Predicted market share = Observed market share
by nonlinear equation solving

dF (a, B)

Step 3 Construct the GMM objective function using instruments

Step 4 Repeat Step 0. — Step 3. for minimizing the GMM objective
function by numerical optimization to estimate parameter
values (& SE by numerical differentiation)

8/124

Nonlinear Equations

Nonlinear Equations
Motivation

Economic equilibrium is often characterized by systems
of nonlinear equations. For example,

e z(p) = 0: System of excess demands with the price
vector p in general equilibrium

e Set of FOCs as conditions for Nash equilibria of
games with continuous strategies
(e.g., Cournot competition)

e k" = f(k*): Finding a fixed point
(e.g., Steady state of dynamic models; Value function
iteration)

10/ 124

Nonlinear Equations
Overview

® Bisection method

® Newton's method

® Secant & Broyden's methods
® As a fixed-point problem

® As a minimization problem

e SciPy optimization package (tutorial)

® Further reading: Judd, Chapter 5

11/124

https://docs.scipy.org/doc/scipy/reference/optimize.html
https://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html

R
X

- = —| — KN e
= =

Bisection Method
f@o1

Nonlinear Equations
Bisection Method: Algorithm

® Based on the Intermediate Value Theorem:
f :R — R continuous and f(a) < 0 < f(b)
Then, 3c € (a,b) s.t. f(c)=0

13 /124

Nonlinear Equations
Bisection Method: Algorithm

Step 0

Step 1
Step 2

Step 3

Based on the Intermediate Value Theorem:
f :R — R continuous and f(a) < 0 < f(b)
Then, 3c € (a,b) s.t. f(c)=0

Find xF & x® st. f(xD) f(xR) <0
Choose stopping criterion!: € or &

Compute midpoint: xM = (x& + x%)/2

Update xF = xl & xB =xM if F(xD)fF(xM) <0
Update x& = xM & xB = xR if F(xD)fF(xM) >0

Check stopping criterion:

If xR —xF < e(1+|xt] + [x%]) or | F(xM)]| < 6,
stop and report the solution at x™

Otherwise, go back to Step 1 again

14 /124

Nonlinear Equations
Bisection Method: Pros and Cons

Pros:
® The simplest and most robust method

15/124

Nonlinear Equations
Bisection Method: Pros and Cons

Pros:
® The simplest and most robust method

e Simplicity: only requires continuity of function

e Robustness: as long as f(x%) f(x®) < 0, it achieves
global convergence with any initial guesses (in case
there is only a single root)

16 /124

Nonlinear Equations
Bisection Method: Pros and Cons

Pros:
® The simplest and most robust method

e Simplicity: only requires continuity of function

e Robustness: as long as f(x%) f(x®) < 0, it achieves
global convergence with any initial guesses (in case
there is only a single root)

Cons:
e Applicable only to 1-dim rootfinding problems

® Slow: require more iterations than other methods,
because it ignores information on the function’s
curvature

17 /124

Nonlinear Equations
Newton's Method

® Take advantage of information on derivatives of a function
(Recall: Bisection method used only continuity of a function)

18/ 124

Nonlinear Equations
Newton's Method

Take advantage of information on derivatives of a function
(Recall: Bisection method used only continuity of a function)

Reduce a nonlinear problem to a sequence of linear problems,
where zeros are easy to compute

0= f(x") ~ flx) + (" = x) f(xe) = g(x0)

Instead of solving f(x) =0, solve g(x) =0

19/124

Nonlinear Equations
Newton's Method

® Take advantage of information on derivatives of a function
(Recall: Bisection method used only continuity of a function)

e Reduce a nonlinear problem to a sequence of linear problems,
where zeros are easy to compute

° 0=/f(x") =~ flxr) + (" = xp) [/ (xe) = g(xk)
® Instead of solving f(x) =0, solve g(x) =0

® Trade-off: Compared to bisection, faster when it works, but
may not always converge

20 /124

Newton's Method

£x)

[P ———

(Judd, Chapter 5 & Collard’s lecture note)

Nonlinear Equations
Newton's Method: Algorithm

Step 0 Set x; with k=0
Choose stopping criteria: € & 6

Step 1 Compute xp41 = X; — }"(&/;))

Step 2 Check stopping criterion:
If |xx —xg41] < €(1+ |xp41]), go to Step 3.
Otherwise, go back to Step 1.

Step 3 If |f(xr+1)] < 6, report x* = xz41 as a solution.
Otherwise, report failure.

22/124

Nonlinear Equations
Newton's Method: Algorithm

Step 0 Set x; with k=0
Choose stopping criteria: € & 6

Step 1 Compute xp41 = X; — }"(&/;))

Step 2 Check stopping criterion:
If |xx —xg41] < €(1+ |xp41]), go to Step 3.
Otherwise, go back to Step 1.

Step 3 If |f(xr+1)] < 6, report x* = xz41 as a solution.
Otherwise, report failure.

e Sufficient condition for convergence: xg is sufficiently close to

x5 f7(x") #0, and [f7(x")/f7(x*)] < eo.
(See Theorem 2.1. in Judd, Chapter 5)

23/124

Remark. x should be sufficiently close to x*

One practical way: First use bisection to obtain a crude
approximation for the root, and then shift to Newton.

Nonlinear Equations

Newton's Method (Multidimensional)

* f:R" = R" Js(): Jacobian of f()
0= f(x) =~ f(xp) + Jp(x) (X" = X)

25 /124

Nonlinear Equations

Newton's Method (Multidimensional)

* f:R" = R" Js(): Jacobian of f()
0= f(x) =~ f(xp) + Jp(x) (X" = X)

Step 0 Set x; with k =0
Choose stopping criteria: € & ¢

Step 1 Compute X1 = Xg — Jf(xk)_lf(xk)

Step 2 Check stopping criterion:
If lIxx — Xk]l < €(1 + |Ixk41]), go to Step 3.
Otherwise, go back to Step 1.

Step 3 If || f(xk+1)|l < 8, report x* = xx41 as a solution.
Otherwise, report failure.

Remark. Require det(J(x*)) # 0

26 /124

Secant Method

¢ Obtaining f’(x) or Jacobian is costly to compute and code
® Secant method instead uses the simplest approximations of

I/ (xk) & Jy(xg) by my & Ay s.t.
f(xx) = f(xg=1) = mg(xx — xx—1) for one-dimensional

f(xx) = f(xp—1) = Ap(xg — Xg—1) for multi-dimensional
e (Called Broyden's method in a multidimensional case
® Set (xg,x1) at the beginning
® QOther processes and properties are similar to Newton's method

e See Judd, Chapter 5 in detail

Nonlinear Equations
As a Fixed-Point Problem

e Fixed-point problems arise frequently in economic
problems.

e Any fixed point problems: x = g(x)
can be cast as
a nonlinear-eq solving: f(x) =x—g(x) =0

e Some (not all) nonlinear-eq solving problems can be
cast as a fixed point problem

28 /124

Fixed-Point lteration

X

X

X

(3),

(2),

(1),

=g(x?)

="

=%

45°

(0) (1) (2)

X

(Miranda and Fackler, Chapter 3)

X X

Nonlinear Equations
Fixed-Point lteration

e Compute a fixed point of x = g(x) (g : R - R)
e Construct a sequence {xi} s.t. xg+1 = g(x%)

e If it converges (limg_c0o xx = x*), then x* = g(x)

30/124

Nonlinear Equations
Fixed-Point lteration

Compute a fixed point of x = g(x) (g : R —> R)
Construct a sequence {xi} s.t. xg+1 = g(xx)
If it converges (limg e xx = x*), then x* = g(x*)

Contraction mapping theorem: If there exists T € [0, 1) such
that [g(x) —g(x")| < T|x — x| Vx,x" € D C R, then x* is a
unique fixed point in D.

31/124

Nonlinear Equations
Fixed-Point lteration

Compute a fixed point of x = g(x) (g : R —> R)
Construct a sequence {xi} s.t. xg+1 = g(xx)
If it converges (limg e xx = x*), then x* = g(x*)

Contraction mapping theorem: If there exists T € [0, 1) such
that [g(x) —g(x")| < T|x — x| Vx,x" € D C R, then x* is a
unique fixed point in D.

Finding such D is hard. In that case, a modified updating
scheme with extrapolation is preferable to stabilize:

Xka1 = Aexg + (1 = Ax) g (x)

where A € [0,1] and limg 00 Ax =0

32/124

Nonlinear Equations
Fixed-Point lteration

Compute a fixed point of x = g(x) (g : R —> R)
Construct a sequence {xi} s.t. xg+1 = g(xx)
If it converges (limg e xx = x*), then x* = g(x*)

Contraction mapping theorem: If there exists T € [0, 1) such
that [g(x) —g(x")| < T|x — x| Vx,x" € D C R, then x* is a
unique fixed point in D.

Finding such D is hard. In that case, a modified updating
scheme with extrapolation is preferable to stabilize:

Xka1 = Aexg + (1 = Ax) g (x)
where A € [0,1] and limg 00 Ax =0

Trade-off between accuracy and speed exists

On the other hand, if the original system is converging too
slowly, 4x < 0 could be a way to accelerate convergence 4,

Nonlinear Equations

Fixed-Point Interation

import matplotlib.pyplot as plt

import numpy as np

from numpy.linalg import norm

from scipy.optimize import bisect, newton

def fp_iter(g,x0,tol=10e—8, maxiter=100):
""" Fixed point iteration

e =1 # error
iter = 0 # number of iteration
x_seq = [] # store the sequence

while (e > tol and iter < maxiter):
####You will code by yourself in the lab session###
return x,x_seq

def fp_iter_rev(g,x0,lambda_k,tol=10e—8, maxiter=100):

""" Fixed point iteration with alternative updating scheme
###You will code by yourself in the lab session###
return x, x_seq

gl = lambda x : np.sqrt(x) # E.g.1)
x-init = .25
x1_fp, xl_seq = fp_iter(gl,x-init)

g2 = lambda x : x**%2 — 1 # E.g.2)

x-init = —0.5

lambda_init = 0.99

x2_fp ,x2_seq = fp_iter (g2, x_init)

x2_fp_rev ,x2_seq_rev = fp_iter_rev (g2, x_-init ,lambda_init)

34/124

In[1]: xl_seq
Out[1]:
array ([0.5

0.97857206,
0.99932333,
0.99997885,
0.99999934,

125

[~

glx)=v

075

050

0.70710678, 0.84089642,
0.98922801, 0.99459942,
0.99966161, 0.99983079,
0.99998942, 0.99999471,
0.99999967, 0.99999983,

Benchmark Scheme

— 45 degree line
® Sequence of FP-iteration
@ Initial point.
® Fixed point

0.00 025 050 015 1.00 125 150 175 200

91700404, 0.95760328,
99729606, 0.99864711,
09991539, 0.99995769,
09999736, 0.99999868,
99999992])

oo ooo

E.g.1) Slower Convergence by the Modified Scheme

gx=12

In[1]: xl_seq-rev

Out[1]:

array ([0.2525 , 0.25747488, 0.26489849, 0.27474099, 0.28696488,
0.3015203 0.31834012, 0.33733537, 0.35839136, 0.38136516,
0.40608443, 0.43234806, 0.45992833, 0.4885748 0.51801943,
0.54798281, 0.57818103, 0.60833281, 0.63816647, 0.66742641,
0.69587881, 0.72331621, 0.749561 , 0.77446754, 0.79792312,
0.81984774, 0.84019279, 0.85893899, 0.87609352, 0.89168681,
0.90576896, 0.91840611, 0.92967684, 0.93966874, 0.94847527,
0.95619295, 0.96291894, 0.96874895, 0.97377564, 0.9780873
0.98176696, 0.98489171, 0.98753235, 0.98975326, 0.99161242,
0.99316159, 0.99444663, 0.99550781, 0.9963803 0.99709453,
0.99767672, 0.99814927, 0.99853123, 0.9988387 0.9990852
0.99928202, 0.99943855, 0.99956254, 0.99966037, 0.99973726,
0.99979747, 0.99984442, 0.99988091, 0.99990916, 0.99993095,
0.99994769, 0.9999605 0.99997028, 0.99997771, 0.99998334,
0.99998759, 0.99999079, 0.99999318, 0.99999497, 0.9999963
0.99999729, 0.99999802, 0.99999856, 0.99999895, 0.99999924,
0.99999945, 0.99999961, 0.99999972, 0.9999998 0.99999986,
0.9999999 1)

ence Failure by the

Benchmark Scheme

gx)=x2-1

— 45 degree line
® Sequence of FP-iteration
@ Initial point

@ Non-convergent cycle

—2.00 175 150 125 100 —075 —0:50 —0.25 0.00

In[1]:
Out[2]:
array ([—9.37500000e—01,

x2_seq

—1.21093750e—01, —9.85336304e—01, —2.91123686e—02,

—9.99152470e—01,

—1.69434170e—03,

-9.

99997129e—01,

—5.74157937e—06,

—1.00000000e+00, —6.59314825e—11, —1.00000000e+00, 0.00000000e+00,
—1.00000000e+00, 0.00000000e+00, —1.00000000e+00, 0.00000000e+00,
—1.00000000e+00, 0.00000000e+00, —1.00000000e+00, 0.00000000e+00,
—1.00000000e+00, 0.00000000e+00, —1.00000000e+00, 0.00000000e+00,
—1.00000000e+00, 0.00000000e+00, —1.00000000e+00, 0.00000000e+00,
71 00000000e+00 O 00000000e+00 71.00000000e+00 O OOOOOOOOe+OO

vergence by the Modified Scheme

— 45 cegree ne
3 ® Sequence of Modified FP-iteration
@ Initial point
@ Fixed point
2
N\
— 1 h
|
B
I
=
S o
a
-2
oo s B s “Too o7 50 0z 000
X
In[1]: x2_seq-rev
Out[1]:
array([—0.256875 , —0.27035009, —0.2898506 , —0.31452286, —0.34326977,
—0.37480589, —0.40773481, —0.44064692, —0.47222899, —0.50137054,
—0.52724889, —0.54937654, —0.5676025 , —0.58206998, —0.5931428
—0.60131839, —0.60714485, —0.61115463, —0.6138204 , —0.61553283,

—0.61659578, —0.61723331, —0.61760269, —0.61780934, —0.61792094,
—0.61797907, —0.61800825, —0.61802237, —0.61802894, —0.61803188,
—0.61803314, —0.61803366, —0.61803387, —0.61803395, —0.61803397])

Nonlinear Equations

Fixed-Point Iteration (Multidimensional)

® Fixed point problem in a multidimensional system with
g:R" > R"

x1 = g1(x1, ..., %)

Xp = 8n(X1,...,%xp)

e Construct a sequence {X;} s.t. Xg41 = g(Xx)

e Contraction mapping theorem applies.
(Check the properties related to Jacobian.)

® The modified updating scheme can also be used similarly to
the single-dimensional case

39/124

Nonlinear Equations

Anderson Acceleration for Fixed-Point Iterations

e Alleviates the potential concern of slow convergence or
divergence associated with the standard FP iteration

® This nests the standard FP iteration, i.e., equivalent under
some parameter values

® See Walker and Ni (2011) for detail

e Both Python (Scipy) and Julia (NLsolve.jl) contain the
package to implement the Anderson Acceleration

40 /124

Nonlinear Equations
Other Elementary Methods for a Multidimensional System

Instead of solving n equations for n unknowns, repeatedly solve each
one of n equations with one unknown in turn:

® Gauss-Jacobi Algorithm

® Gauss-Seidel Algorithm

41/124

Nonlinear Equations
Toward Convergence

® The convergence is not guaranteed in most methods for a
multi-dimensional system

e Sensitive to initial guesses, but often difficult to find good ones

42/124

Nonlinear Equations
Toward Convergence

® The convergence is not guaranteed in most methods for a
multi-dimensional system

e Sensitive to initial guesses, but often difficult to find good ones

® Obtain better initial guesses from optimization ideas:

® Optimization problems are less sensitive to initial guesses
® One simple way is to obtain a rough guess of f(x) =0 by solving
min, Y7, f/(x)? with a loose stopping rule

® (We cover optimization algorithms in the next section)

43 /124

Nonlinear Equations
Toward Convergence

® The convergence is not guaranteed in most methods for a
multi-dimensional system

e Sensitive to initial guesses, but often difficult to find good ones

® Obtain better initial guesses from optimization ideas:

® Optimization problems are less sensitive to initial guesses

® One simple way is to obtain a rough guess of f(x) =0 by solving

min, Y7, f/(x)? with a loose stopping rule

® (We cover optimization algorithms in the next section)

¢ Continuation methods: Construct a sequence of problems
(each of which is reasonably solvable) that ultimately leads to
the problem of interest

44 /124

Lab

Exercise

Aim.

Tasks.

2.1.

2.2.

Get accustomed to basic one-dimensional methods for solving a
non-linear equation

f(x) =exp((x=2)%) -2 -x

g(x) = exp((x - 2)%) -2

Solve f(x) =0 or x = g(x) over the domain x € [0, 2]

Solve f(x) =0 by the bisection method with initial x = 0.5 & xR = 1.5.
You can use the SciPy root-finding package.

Solve x = g(x) by the fixed-point iteration with the updating rule
Xk+1 = g(xx). Code the algorithm by yourself.
Does this work? Explain why or why not.

Solve x = g(x) by the fixed-point iteration with the updating rule

Xial = ApXp + (1 - /lk)g(xk) where Ag=1 & A =0.9944 1

Using matplotlib.pyplot, plot the convergent sequence (like what we
saw in the lecture).

(Adapted from Collard, Lecture Notes 5.)

46 /124

https://docs.scipy.org/doc/scipy/reference/optimize.html

Assignment 3
Assignment: Cournot Duopoly Model

Aim. Get accustomed to basic multi-dimensional methods for solving a system
of non-linear equations. Vectorize the system.
® Quantity competition by 2 firms i =1,2
* Inverse demand of a good: P(q) = ¢~/
* Cost function: Ci(g;) = 3ciq?
® Profit for each firm i: 7n;(q1,q92) = P(q1 +q2)q; — Ci(q)
® Assume c; =0.6 & c2 =0.8
Task 1. Solve for equilibrium g for i = 1,2 and P(q] + ¢5) with @ = 1.5 by
(1) Newton's method: Code the algorithm by yourself. That is,

analytically derive the Jacobian of the set of FOCs.
(2) Broyden's method: You can use the SciPy root-finding package.

(3) Fixed-point iteration: Code the algorithm by yourself.

Task 2. Solve the model for all @ € [1, 3] (construct grids) by Broyden's method.
Using matplotlib.pyplot, produce two plots with x-axis @ & y-axes (i)
q7- 45 (i) P(q] +45).

48 /124

https://docs.scipy.org/doc/scipy/reference/optimize.html

Note for Non-Economics Students

* |Imperfect competition: There are only two firms in the
market. Each firm's quantity decision impacts the market price
via consumer demand structure.

® The first order condition of firm i's profit maximization
problem (given the other firm's decision):
87‘(1 ’ ’
P P(q1+q2) + P'(q1+q2)qi — C{(q:) =0
1
® The equilibrium condition is that both the following equalities
hold simultaneously:

11 1
fi(q1.q2) (g1 +qg2) @ - E(CH +q9) e g1 —c191 =0

_1 1 _1_
f2(q1,q2) (q1+92) 7 = —(q1+¢2)"" Lgo —c2ga =0

® Numerically solve for the equilibrium g7 & ¢3.

Optimization

Optimization

Numerical Optimization: Motivation

e Optimization is ubiquitous in economics and
econometrics

e Economic problems: Consumer's utility
maximization, Firm’s profit maximization and cost
minimization, Social planner’s total surplus
maximization, etc

e Econometric problems: Minimizing the sum of

squared errors, Minimizing the GMM objective
function, Maximizing the likelihood function, etc

51/124

Optimization
Numerical Optimization: Remarks

® Numerical optimization is costly in terms of:

(i) Computation time
(ii) Risk of missing the exact solution

Hence, avoid it whenever possible

52/124

Optimization
Numerical Optimization: Remarks

® Numerical optimization is costly in terms of:

(i) Computation time
(ii) Risk of missing the exact solution

Hence, avoid it whenever possible
(i): Check if solving a set of equations suffices to solve the whole
problem, which saves comuputation time. E.g.:

® Convex optimization problems in which KKT conditions
are sufficient for optimization
® Exactly identified case in GMM

53 /124

Optimization
Numerical Optimization: Remarks

® Numerical optimization is costly in terms of:

(i) Computation time
(ii) Risk of missing the exact solution

Hence, avoid it whenever possible

(i): Check if solving a set of equations suffices to solve the whole
problem, which saves comuputation time. E.g.:

® Convex optimization problems in which KKT conditions

are sufficient for optimization
® Exactly identified case in GMM

® Choosing just a faster optimization algorithm is also dangerous
due to (ii).

® Important to understand the trade-off between accuracy and
speed across different optimization algorithms.

54 /124

Optimization
Remarks

e Optimization is costly in terms of

(i) Computation time
(ii) Risk of missing the exact solution

Hence, avoid it whenever possible

(ii): Any optimization algorithm finds local optimum, but there is
no guarantee that global optimum is found (unless the
objective function is globally concave or convex).

Obtained solutions are susceptible to:

® Search algorithms
® |nitial guesses
® Stopping rules

55 /124

Optimization

Example of (i): Fajgelbaum & Schaal (2020 ECTA)

® Fajgelbaum & Schaal (2020 ECTA) “Optimal Transport
Networks in Spatial Equilibrium”

Q. How large are the gains from expansion and the losses from
misallocation of current road networks in Europe?

® An example of an economically simple, but a computationally
hard problem

e Also, an example of research in which quantification is of first
order importance

e |llustrate the importance of caring about computational
burden in a large-scale problem

56 /124

The problem of optimally designing the road network is determining how much
to invest in each link.

Fajgelbaum & Schaal (2020): Environment

Geography:
e J=A1,...,J}: locations (nodes)

® N(Jj): set of connected location of j
Goods can be directly shipped only through connected locations

® L;: Number of workers in j, immobile across locations
L: Total number of workers

Fajgelbaum & Schaal (2020): Environment

Geography:
e J=A1,...,J}: locations (nodes)

® N(Jj): set of connected location of j
Goods can be directly shipped only through connected locations

® L;: Number of workers in j, immobile across locations
L: Total number of workers

Commodities:
Y=L tradable good production for sector n

® H;j: the non-tradable good endowment (constant)
hj=H;/L;: per-capita consumption of the non-traded good

=
o-1) o-1

. C :(N

cj=Cj/Lj: per-capita consumption of traded goods bundle

Fajgelbaum & Schaal (2020): Environment

Geography:
e J=A1,...,J}: locations (nodes)

® N(Jj): set of connected location of j
Goods can be directly shipped only through connected locations

® L;: Number of workers in j, immobile across locations
L: Total number of workers

Commodities:
Y=L tradable good production for sector n

® H;j: the non-tradable good endowment (constant)
hj=H;/L;: per-capita consumption of the non-traded good

o1\ 7T
. C :(N)
cj=Cj/Lj: per-capita consumption of traded goods bundle
Preference:

® U(c, h): worker's utility (homothetic and concave)

Network Building & Transport Technologies

® [Infrastructure (roads) along the link jk
Def “Transport network” = Distribution of {/;x}je 7 ren())

o K: total resource for building infrastructure
Building 11 requires investment 6§kljk units of K

Network Building & Transport Technologies

® [Infrastructure (roads) along the link jk
Def “Transport network” = Distribution of {/;x}je 7 ren())

o K: total resource for building infrastructure
Building 11 requires investment 5§k1ﬂ< units of K

° ;.‘k: Quantity of good n shipped from j to k € N(j)

® Transporting one unit of good n from j to k € N(j) requires T}’k units of

good n , i.e., “lceberg cost” =1 + TJ’.‘k, where

(Q;-'k)ﬁ
Ijx)Y

T;'lk = Tjk(Q?’k?]jk) = 6}]{

6;,(: geographic frictions
(e.g., distance, elevation, ruggedness, river, etc)

B,y > 0: decreasing returns to transport (congestion force) & positive
returns to infrastructure

Network Building & Transport Technologies

® [Infrastructure (roads) along the link jk
Def “Transport network” = Distribution of {/;x}je 7 ren())

o K: total resource for building infrastructure
Building 11 requires investment 5§k1ﬂ< units of K

° ;.‘k: Quantity of good n shipped from j to k € N(j)

® Transporting one unit of good n from j to k € N(j) requires T}’k units of

good n , i.e., “lceberg cost” =1 + TJ’.‘k, where

(Q;-'k)ﬁ
Ijx)Y

T;'lk = Tjk(Q?’k?]jk) = 6}]{

6;,(: geographic frictions

(e.g., distance, elevation, ruggedness, river, etc)

B,y > 0: decreasing returns to transport (congestion force) & positive
returns to infrastructure

® Total transport costs Q;?k‘rjk(Q;?k,Ijk) are jointly convex over Q;?k and
Ijk iff ,8 =y

Optimization

Fajgelbaum and Schaal (2020): Social Planner’s Problem

SP’s problem consists of three subproblems:
e Optimal Allocation (given infrastracture and goods flow):
e Optimal Transport (given infrastructure)

e Optimal Infrastructure Network Design
(= the full problem)

64 /124

s.t.

(M

(i)

(iii)

(iv)
v)

D, wiLiU(cj b))
7

}ijLjU(Cj,hj)
J

max
{ejshjtTjiken()-CF L7 AQ ey

max max max
jichien () Qi ken()) Lejhj-CFL LY

Optimal allocation subproblem

Optimal transport subproblem

Optimal infrastructure network design problem
Availability of tradable & non-tradable goods:
cjLi <Cj& h;L; <H; Vj

Balanced-flows constraint:

cr + Z A+ 7 Q7 L)) Q. < Y+ Z Qf Vm.j

N KEN(j) —— N ()
Consumption Production ————
Exports Imports

Network-building constraint:
1
D Shdik <K
J keN(j)
Local labor market clearing

Non-negativity constraints on consumption, flows, and factor use

Optimization

Fajgelbaum & Schaal (2020): Social Planner’s Problem

SP’s problem consists of three subproblems:
e Optimal Allocation (given infrastracture and goods flow)
e Optimal Transport (given infrastructure)

e Optimal Infrastructure Network Design
(= the full problem)

The full problem is globally convex if the transport costs are jointly

convey, i.e., if B >y
(review the 1st year math!)

66 /124

Optimization

Fajgelbaum & Schaal (2020): Numerical Implementation

Convex cases (8 > v):

e KKT conditions are both necessary and sufficient

® Numerically tractable

67 /124

Optimization

Fajgelbaum & Schaal (2 : Numerical Implementation

Convex cases (8 > v):

e KKT conditions are both necessary and sufficient

® Numerically tractable
Non-Convex cases (8 < y):
® The above approach is not guaranteed to find the global
optimum
e Optimal transport and allocation subproblems are convex if
Q71 (Q, k) is convex in Q, ie., if >0
® |terative procedure over the infrastructure investments:

® Guess on the network investment I

Solve for the optimum over {c;, C;?, hj, L;f, Q?k}
Obtain a new guess over [

Repeat until convergence...

68 /124

Optimization

Example of (ii): BLP Again

e Consumer i's utility from product j in market ¢:
Uijt = XjBi — aipji + &ji + €iji
where

® pj:: price of product j in market ¢

® x;j: row vec. of non-price characteristics of j

® ¢ product- & market-specific demand shock
E(&j¢lpji,xj) # 0: endogeneity of prices

¢ Discrete choice model: Each consumer chooses one product
jel,...,J in the market or an outside option j = 0 with
ujor = €0, which maximizes his/her utilit

® Sources of consumer heterogeneity:

® € ~iia lype | extreme value distribution
* (anBi) ~N(u,x%)

69 /124

Optimization

Example of (ii): BLP Again

® Here | follow Knittel and Metaxoglou (2014 REStat) which

emphasize numerical challenges of BLP RC-logit demand
models

e |llustrates with the BLP RC-logit demand model that different
combinations of search algorithms, initial guesses, and
stopping rules lead to convergences at different optima

® Observed convergences at:

® Points where 1st- and 2nd- order conditions faill
® |ocal optima

® Also, observed convergence failure in some instances

70/ 124

https://www.mitpressjournals.org/doi/abs/10.1162/REST_a_00394?casa_token=K2Znts8go_0AAAAA:eWUdGTirmgsYTMdUaNII3LhLOe5pG9qPNFimbgVJYKKro_XvGbEaot_iX1soTulOi83OisLbf9oZ

TABLE 2.—OPTIMIZATION ALGORITHMS

Class Description Source Acronym
Derivative-based Quasi-Newton | MathWorks DERI-QNI
Quasi-Newton 2 Publicly available DER2-QN2
Conjugate gradient Publicly available DER3-CGR
SOLVOPT Publicly available DER4-SOL
KNITRO Ziena Optimization DERS-KNI
Deterministic direct search Simplex MathWorks DIRI-SIM
Mesh adaptive direct search MathWorks DIR2-MAD
Generalized pattem search MathWorks DIR3-GPS
Stochastic direct search Simulated anncaling Publicly Available STOI-SIA
Genetic algorithm GADS MathWorks STO2-GAL
Simulated annealing GADS MathWorks STO3-S1G

DERI1-QNI1

DER2-QN2

DER3-CGR

DER4-SOL

DER5-KNI

DIR1-SIM

DIR2-MAD

DIR3-GPS

STOI=SIA

STO2-GAL

STO3-SIG

Loose
Tight
Loose
Tight
Loose
Tight
Loose
Tight
Loose
Tight
Loose
Tight
Loose
Tight
Loose
Tight
Loose
Tight
Loose
Tight
Loose
Tight

A. Automobiles

—
—
e so——EN— o
p o - .
———
— . .
* ——Em— .
b o - L]
Des
oo
b o | - -
[] —] L] L]
4 L] .
——
——
— I
I
~-— o o
. —— - .
-mee o e L]
e o =] L]
100 150 200 250 350

Objective Function Value

DERI-QNI

DER2-QN2

DER3-CGR

DER4-SOL

DERS5-KNI

DIR1-SIM

DIR3-GPS

STO2-GAL

STO3-SIG

Loose
Tight
Loose
Tight
Loose
Tight
Loose
Tight
Loose
Tight
Loose
Tight
Loose
Tight
Loose
Tight

Loose
Tight

B. Cereals

|

I
|
. — — —
. ——
[]
L]
20 40 60 80 100 120

Objective Function Value

Optimization
Summary

e Optimization is costly in terms of

(i) Computation time
(ii) Risk of missing the exact solution

Hence, avoid it whenever possible

(i): Check if solving a set of equations suffices to solve the whole
problem, which saves comuputation time.

(ii): Any optimization algorithm finds local optimum, but there is
no guarantee that global optimum is found (unless the
objective function is globally concave or convex).

® Understand the trade-off between accuracy and speed across
different optimization algorithms.

74 /124

3 Types of Methods

e Derivative-based methods (1st order):

® Require differentiability
® Uses information about gradients

e Derivative-based methods (2nd order):

® Uses information about gradients and curvature
® Converges more rapidly to the solution
® High cost of computing and storing Hessians

® Derivative-free methods (Oth order):

® Slow
® Suitable for problems with kinks and discontinuities

75 /124

3 Types of Methods

e Derivative-based methods (1st order):

® Require differentiability
® Uses information about gradients

e Derivative-based methods (2nd order):

® Uses information about gradients and curvature

® Converges more rapidly to the solution

® High cost of computing and storing Hessians
® Derivative-free methods (Oth order):

® Slow

® Suitable for problems with kinks and discontinuities
® Trade-off: Higher order methods are speedier, while lower

order methods give more accurate solutions

76 /124

Optimization
Several Common Methods

® Derivative-based methods

® Bisection method (1st order)
® Newton's method (2nd order)
® Quasi-Newton method (2nd order)

® Derivative-free methods

® Grid search method
® Bracket method
[]
[]

Golden section search method
Nelder-Mead method

e Constrained optimization

® Penalty function method
® Sequential least squares programming (Derivative-based)
® By linear approximation (Derivative-free)

e SciPy optimization package (tutorial)

77/ 124

https://docs.scipy.org/doc/scipy/reference/optimize.html
https://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html

Derivative-Based Methods

Bisection Method (1st order)

Step 0

Step 1

Step 2

Step 3

Similar logic to the bisection in non-linear equation solving,
based on the Intermediate Value Theorem

Find x& & x® st. f/(x1) F/(x®) <0
Choose stopping criterion®: € or §

Compute midpoint: x¥ = (x© +x%)/2

Update x* = xt & xR =xM if f/(x5)f'(xM) <0
Update x© = xM & xR = xR if f/(x5)f'(xM) > 0

Check stopping criterion:

If xR —xf < e(1+ |xL| + [x%]) or | fF/(xM)] < 6,
stop and report the solution at x¥

Otherwise, go back to Step 1 again

Optimization

Newton's Method (2nd order)

e Similar logic to Newton's method in non-linear equation solving
¢ F)~ flx)+) = xe) + L5 (- x)?
° FOC: 0= f"(x") = f"(xi) + (x™ = xi0) [(i)
Step 0 Set x; with k=0
Choose stopping criteria: € & 6

S (xk)

S (xk)

Step 2 Check stopping criterion:
If |xx —xg41] < €(1+ |xg41]), go to Step 3.
Otherwise, go back to Step 1.

Step 1 Compute xj41 = X —

Step 3 If | f"(xk4+1)] < 6, report x* = xz41 as a solution.
Otherwise, report failure.

80/124

Eg.1) Local & Global Optimum

Eg.1)

import matplotlib.pyplot as plt
import numpy as np

import scipy

from scipy.optimize import minimize

obj_1 = lambda x: x**4—5%(x**2)—x
argmin_1_1 = minimize(obj_-1, x0=—0.5, method="BFGS") # a quasi—newton's method
argmin_1_2 = minimize(obj_1, x0=0.5, method='BFGS")

In [12]: argmin_1_1
Out[12]:
fun: —4.694706337665813
hess_inv: array ([[0.05546626]])
jac: array ([—5.96046448e—08])

message: 'Optimization_terminated._successfully.’
nfev: 18
nit: 4
njev: 6

status: 0

success: True
x: array([—1.52854364])

In [13]: argmin_1_2
Out[13]:
fun: —7.855394472077334
hess_inv: array ([[0.0457116]])
jac: array ([—8.34465027e—07])

message: 'Optimization_terminated_successfully.’
nfev: 21
nit: 5
njev: 7

status: 0

success: True
x: array ([1.62894846])

Eg.2) Too Small Changes in Gradients

x4

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

.2) Scaling Matters

import matplotlib.pyplot as plt
import numpy as np
import scipy

from scipy.optimize

import minimize

method="BFGS ")

obj_-2 = lambda x: x*x4
obj-2_transform = lambda x: 10000%xxx4
In [12]: minimize(obj-2, 10, method='BFGS")
Out[12]:
fun: 1.1274113375014166e—08
hess_inv: array ([[328.87754176]])
jac: array ([4.37645767e—06])
message: 'Optimization_terminated_.successfully.’
nfev: 78
nit: 25
njev: 26
status: 0
success: True
x: array ([0.01030435])
In [13]: minimize(obj-2_transform , 10,
Out[13]:
fun: 1.4693518450033662e—09
hess_inv: array ([[9.10967096]])
jac: array ([9.49336157e—06])
message: 'Optimization_terminated_successfully.’
nfev: 108
nit: 35
njev: 36
status: 0
success: True
x: array ([0.00061913])

Optimization

Newton's Method (Multidimensional)

Step 0

Step 1

Step 2

Step 3

f:R" = R; H(): Hessian of f()
0 =V/f(x*) = Vf(xk)+Hyp(xe) (X" = xx)

Set x; with k =0
Choose stopping criteria: € & 6

Compute X1 = Xk — H 7 (%) MV f (%)

Check stopping criterion:
If 1%k = Xks1]] < €(1 + [[xg41]), go to Step 3.
Otherwise, go back to Step 1.

f[VF(xi)|l < 0(1+|f(xk)]), report X* = Xg41 as an optimum.
Otherwise, report failure.

Converge quadratically to a local optimum.

85 /124

Optimization
Newton's Methods (Multidimensional): Caveats

e (Calculating Hessian and its inverse is costly

86/124

Optimization
Newton's Methods (Multidimensional): Caveats

e (Calculating Hessian and its inverse is costly

® Also, Hessian must be well-conditioned:
® |nvertible

® Positive semi-definiteness (in a minimization problem)
around the solution, so that the objective function value
is approached toward the solution in each Newton step

87 /124

Optimization
Newton's Methods (Multidimensional): Caveats

e (Calculating Hessian and its inverse is costly

® Also, Hessian must be well-conditioned:
® |nvertible

® Positive semi-definiteness (in a minimization problem)
around the solution, so that the objective function value
is approached toward the solution in each Newton step

e However, no guarantee that the above conditions
hold, especially at points far from the solution

88/124

Optimization

Practical Methods for Multidimensional Cases

* Quasi-Newton methods: approximate a Hessian (or its
inverse) by a positive definite Hy, guaranteeing that function
value can be decreased in the direction of the Newton step (in
a minimization problem), s.t.

H ' (Vf (k1) = VF(xR)') = X1 — Xk

Check several quasi-Newton methods with different updating
rules of {Hy} by yourself:

® Broyden-Fletcher-Goldfarb-Shanno (BFGS) method
® Davidson-Flecther-Powerl (DFP) method

e Conjugate Gradient Method (CGM): Store only a
gradient, while implicitly keeping track of curvature
information in a useful way without storing a Hessian

e See Judd, Chapter 4 in detail

89/124

Derivative-Free Methods

Grid Search Method

® Simplest and most primitive

91/124

Grid Search Method

® Simplest and most primitive

® Credible global solution (if parameter space is sufficiently wide
and grids are not too coarse)

e Slow (especially for a high demensional case)

92/124

Grid Search Method

® Simplest and most primitive

® Credible global solution (if parameter space is sufficiently wide
and grids are not too coarse)

e Slow (especially for a high demensional case)

® Useful for understanding the shape of objective function:

® Unless you are aware of the functional form clearly
(which rarely happens), for whatever method you will
finally adopt, begin by plotting with this method

® That helps you to select which type of more
sophisticated method to adopt if necessary

93/124

Optimization

Nelder-Mead (Downhill Simplex) Method

® A widely-used derivative-free optimization method for
multi-dimensional functions

e f:R"—>R

Begin by evaluating the objective function at n+ 1 points

These points form a simplex in R

Directly search for the optimum by moving this simplex with
several steps
(reflection; expansion; contraction; shirinkage)

94 /124

Optimization

Nelder-Mead (Downhill Simplex) Method

® A widely-used derivative-free optimization method for
multi-dimensional functions

e f:R"—>R

Begin by evaluating the objective function at n+ 1 points

These points form a simplex in R

Directly search for the optimum by moving this simplex with
several steps
(reflection; expansion; contraction; shirinkage)

Remark. Speedier than the grid search method (and much more
accurate than derivative-based methods), but not still perfect for
converging to a global solution. Try with several initial guesses.

95 /124

[llustration with n = 2

Simplex Transformations in the Nelder-Mead Algorithm

Reflection Expansion
B B
AE A
c
Contraction Shrinkage
B B
A& A
c C

(Miranda and Fackler, Chapter 4)

[llustration with n = 2

(Lecture note by Fernandez-Villaverde and Guerrén)

Optimization
Derivative-Based vs. Derivative-Free Methods

® Plot the objective function with some coarse grids to get a sense.

® If you are sure that the function is globally concave/convex, use a
derivative-based method.
(Check if different initial guesses actually globally converge.)

® Otherwise, go for a derivative-free method like Nelder-Mead.
(Again, check with different initial guesses.)

® Whatever method you finally adopt, check the robustness with the grid
search method in some reasonable range of parameters.

98 /124

Optimization
Derivative-Based vs. Derivative-Free Methods

® Plot the objective function with some coarse grids to get a sense.

® If you are sure that the function is globally concave/convex, use a
derivative-based method.
(Check if different initial guesses actually globally converge.)

® Otherwise, go for a derivative-free method like Nelder-Mead.
(Again, check with different initial guesses.)

® Whatever method you finally adopt, check the robustness with the grid
search method in some reasonable range of parameters.

® Trade-off: In general, higher order methods (derivative-based) are
speedier, while lower order methods (derivative-free) methods tend to
give more accurate solutions

99/124

Optimization
Derivative-Based vs. Derivative-Free Methods

® Plot the objective function with some coarse grids to get a sense.

® If you are sure that the function is globally concave/convex, use a
derivative-based method.
(Check if different initial guesses actually globally converge.)

® Otherwise, go for a derivative-free method like Nelder-Mead.
(Again, check with different initial guesses.)

® Whatever method you finally adopt, check the robustness with the grid
search method in some reasonable range of parameters.

® Trade-off: In general, higher order methods (derivative-based) are
speedier, while lower order methods (derivative-free) methods tend to
give more accurate solutions

® Accuracy of derivative-free methods is not still perfect. (Eg. 1)

100/ 124

Eg.1) (Again) Local and global optimum

x4 —5x2—x

In [12]:
Out[12]:

fun:
hess_inv:
jac:
message:
nfev:
nit:
njev:
status:
success:
X

In [13]:
Out[13]:

minimize (obj_1,

minimize (obj-1, —0.1, method='BFGS")

—7.855394472077359
array ([[419.3338208]])
array ([1.19209290e—07])

'Optimization_terminated._.successfully .’

36

2

12

0

True

array ([1.6289485])

final_simplex: (array([[—1.52851563],

[—1.52859375]]), array([—4.69470633, —4.69470632]))

message: 'Optimization_terminated._successfully.’
nfev: 42
nit: 21
status: 0

fun: —4.6947063305936503

success: True

x: array([—1.52851563])

—0.1, method="Nelder—Mead")

Optimization
Derivative-Based vs. Derivative-Free Methods

® Plot the objective function with some coarse grids to get a sense.

® |f you are sure that the function is globally concave/convex, use a
derivative-based method.
(Check if different initial guesses actually globally converge.)

® Otherwise, go for a derivative-free medhod like Nelder-Mead.
(Again, check with different initial guesses.)

® Whatever method you finally adopt, check the robustness with the grid
search method in some reasonable range of parameters.

® Trade-off: In general, higher order methods (derivative-based) are
speedier, while lower order methods (derivative-free) methods tend to
give more accurate solutions

® Accuracy of derivative-free methods is NOT still perfect. (Eg. 1)

® Derivative-free methods are superior especially when there are
discontinuities in the objective function. In such cases, derivative-based
methods work very poorly. (Eg. 3)

103 /124

Eg.3) Discontinuities in the Objective Function

2-player public investment game

Utility:
_ 3aatxp) 7 . _
ui(xa,xp) =(2 = x; + Lejuay>3=—5">) ,i=A,B

Welfare: W(XA,XB) = uA(xA,xB) +MB(XA,)CB)

*

Welfare-maximizer: (x,xy) = (2,2)

Eg.3) Discontinuities in the Objective Function

e Utility:
ui(xa,xp) (2 x,+]le+xB>3M) i=AB

e Welfare: W(xa,xp) = ua(xa,xp) +up(xa,xp)

import numpy as np

from scipy.optimize import minimize
import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

def Inv_.W(x):

x-a = x[0]
x-b = x[1]
sigma = 0.7

inv_return = np.where(x_a+x_-b>=3, 3x(x_.a+x_b), 0)
return —(((2—x-a) + inv_return /2)xxsigma + ((2—x-b) + inv_return /2)*xsigma)

x-a = np.arange(0, 2.0+0.1, 0.1)
x-b = np.arange(0, 2,0+O,1 0.1)
X_a, X_b = np.meshgrid(x- x-b)
PG_welfare = —Inv_.W (np. array([X a, X-b]))

ax = Axes3D(plt.figure())

ax.set_xlabel ("x_A")

ax.set_ylabel ("x_-B")

ax.set_zlabel ("$W(x.A, _x_-B)$")
ax.plot_wireframe(X.a, X_.b, PG_welfare)
plt.show ()

Set up for a constrained optimization problem:

constraintl = lambda x: x—0.0

constraint2 = lambda x: 2.0—x

constl = ({ 'type’': ’'ineq', ’'fun’ constraintl})
const2 = ({ 'type’': ’'ineq’', 'fun’' : constraint2})
const = [constl, const2]

Derivative-based (Sequential Least Squares Programming):

In[12]: inv_init = [1.49, 1.49]
...: minimize(Inv.W, inv_init, method='SLSQP', constraints=const)
Out[12]:
fun: —3.2490095854249414
jac: array([0.56857666, 0.56857666])

message: 'Optimization_terminated_successfully.’
nfev: 12
nit: 3
njev: 3

status: 0
success: True
x: array([4.4408921e—16, 0.0000000e-+00])

Derivative-free (Constrained Optimization By Linear Approximation):

In[13]: inv_init = [1.1, 1.1]
...: minimize(Ilnv.W, inv_init, method="COBYLA', constraints=const)
Out[13]:
fun: —7.010346004639045
maxcv: 3.535533905951738e—05
message: 'Optimization_terminated_successfully.’
nfev: 13
status: 1
success: True
x: array ([2.00003536, 2.00003536])

Optimization
Practical Advice: Solving

® First of all, judge if numerical optimization is really necessary

107 /124

Optimization
Practical Advice: Solving

® First of all, judge if numerical optimization is really necessary

® Estimate the objective function with multiple optimization algorithms,
ideally from difference orders

® Try multiple stopping rules based on tight tolerances

® Try multiple initial guesses for parameter values:

® Based on prior information from economic theory
® Without such information, use random draws

108 /124

Optimization

Practical Advice: Solving

® First of all, judge if numerical optimization is really necessary

® Estimate the objective function with multiple optimization algorithms,
ideally from difference orders

® Try multiple stopping rules based on tight tolerances

® Try multiple initial guesses for parameter values:

® Based on prior information from economic theory
® Without such information, use random draws

® (For a very high dimensional problem,) divide the optimization problem in

hand in smaller dimensions:

Split the paramter vector 0 into 61 & 0o

Fix 61 and estimate 65

With estimates of 62, estimate 6,

Iterate this process until the objective function value changes little
Finally, simultaneously estimate 6; & 63

109 /124

Optimization

Practical Advice: Solving

® First of all, judge if numerical optimization is really necessary

® Estimate the objective function with multiple optimization algorithms,
ideally from difference orders

® Try multiple stopping rules based on tight tolerances

® Try multiple initial guesses for parameter values:

® Based on prior information from economic theory
® Without such information, use random draws

® (For a very high dimensional problem,) divide the optimization problem in

hand in smaller dimensions:

Split the paramter vector 0 into 61 & 0o

Fix 61 and estimate 65

With estimates of 62, estimate 6,

Iterate this process until the objective function value changes little
Finally, simultaneously estimate 6; & 63

® Consider combining optimization algorithms:
® Grid search with coarse grids for guessing a reasonable range of parameter
values

® Then, use other faster methods to estimate the parameters
110/ 124

Optimization
Practical Advice: Validating

® (Collect the sets of parameter estimates & objective function values

® Pick the parameter estimates which achieve the lowest objective function
value among the collected sets

® Make sure that the algorithm converges to the picked parameter
estimates

111/ 124

Optimization
Practical Advice: Validating

® (Collect the sets of parameter estimates & objective function values

® Pick the parameter estimates which achieve the lowest objective function
value among the collected sets

® Make sure that the algorithm converges to the picked parameter
estimates

® Plot the objective function value against each of the parameters over an
interval around the estimated value, keeping the other parameters fixed
at the estimated values

= Make sure it passes the “ocular” identification test

112/124

Optimization
Practical Advice: Validating

® (Collect the sets of parameter estimates & objective function values

® Pick the parameter estimates which achieve the lowest objective function
value among the collected sets

® Make sure that the algorithm converges to the picked parameter
estimates

® Plot the objective function value against each of the parameters over an
interval around the estimated value, keeping the other parameters fixed
at the estimated values

= Make sure it passes the “ocular” identification test
® Simulate a dataset given the estimated parameter values

= Estimate the parameters given the simulated dataset and make sure that
the newly estimated parameters have the same values as the ones
obtained first

113 /124

Optimization
Practical Advice: Validating

® (Collect the sets of parameter estimates & objective function values

® Pick the parameter estimates which achieve the lowest objective function
value among the collected sets

® Make sure that the algorithm converges to the picked parameter
estimates

® Plot the objective function value against each of the parameters over an
interval around the estimated value, keeping the other parameters fixed
at the estimated values

= Make sure it passes the “ocular” identification test
® Simulate a dataset given the estimated parameter values

= Estimate the parameters given the simulated dataset and make sure that
the newly estimated parameters have the same values as the ones
obtained first

® Again, no perfect procedure for identifying global optima exists!
But think wisely for reducing the possibilities of failures!

114 /124

TABLE 4.—OPTIMIZATION-DESIGN DETAILS AND DIAGNOSTICS CHECKLIST

Step Details and Diagnostics
I. Optimization design Optimization algorithm

Starting values
Objective function value tolerance
Parameter vector tolerance
Other optimization settings
Fixed-point iteration settings
Market share evaluation draws
2. Convergence and local optima Multiple optima (Y/N)
Number of runs converged
Algorithm exit code
Objective function value
Parameter estimates
Gradient-based FOC diagnostics
Hessian-based SOC diagnostics
3. Implications for Variation due to multiple optima, if any, for:
economic variables of interest e Objective function value
e Parameter estimates
e Own- and cross-price elasticities: statistics
e Other economic variables of interest:
statistics

Source: Nittel & Metaxoglou (2014)

Optimization
Further Readings

There are still much more methods that this lecture has not covered.
Please see, for example:

® Judd, Chapter 4

e Note by Fernandez-Villaverde & Guerrén

® Note by Todd Munson

e Knittel, Christopher R., and Konstantinos Metaxoglou.
“Estimation of random-coefficient demand models: two
empiricists’ perspective.” Review of Economics and Statistics
96.1 (2014): 34-59.

® Also, read SciPy documentations carefully

116 /124

https://www.sas.upenn.edu/~jesusfv/Lecture_NM_2_Optimization.pdf
https://web.archive.org/web/20150727035916/http://ice.uchicago.edu/2012_presentations/Faculty/Munson/seminar-1.pdf

Lab

Exercise

Aim.

Task.

Experience the imperfection of numerical optimization for
finding a global solution

Minimize f(x) = 3x* — 5x3 + 2x2 by

. (Quasi-)Newton's and Nelder-Mead methods with initial

guesses

1.1. -0.25
1.2. 0
1.3. 0.25
1.4. 05
1.5. 0.75
16. 1

Grid search

118 /124

Assignment 4
Setting: Quasi-hyperbolic discounting structure

® An application to a simple structural model
® Time preferences play important roles for various dynamic decisions.

® Not only discount factor, but also present biasness matters.
e.g.) | do not want to do my homework just now, so | allocate much
more study time to tomorrow. The ratio of study time between today
and a future day can differ from the planned ratio between two future
days with an equal interval.

® An individual at period r maximizes lifetime utility:
Ue) = ulee) + B) 8 ulcrnr)
k=1

® Read Andreoni and Sprenger (2012 AER), Augenblick et al. (2015 QJE),
and Casaburi and Macchiavello (2019 AER) if you are interested, but not
necessary for this assignment.

120/ 124

Assignment 4
Experiment & Data Generating Process

® A researcher conducts a lab experiment in India for obtaining time
preference parameters.

® Subjects are asked to choose two-period intertemporal allocations of
money (Rs. 4000) within a convex budget set, with various ¢ (earlier
date), k (time interval between th earlier and later dates), and several
interest rates P = (1 +7r).

® Assume that the subjects solve:

Uler, crni) = cff + plmoskes,
s.t. PC, + Ciik = 4000

® Solving this,

4000(gL=0 5% p)1/(@-D
Cy =
"7 14 P(plogk p)l/a-D)

= g(]lt:O, k7 P;ﬁ’ 67 a’)

® Parameters: B: present biasness, ¢: discount factor, a: curvature
(IES=1/(1 - a)).

121/ 124

Convext Time Budget (CTB) Experiment

Section C: fa&ar

« Test C-1 % answer sheet &T Teh 3algXvl

(option)
A-E HPIS TH
T

Today | 3800Rs. 2850Rs. 1900 Rs. 950 Rs. O Rs.

fption A Option B Option C Option D Option E

& & & & &

5 weeks from today ORs. 1000Rs. || 2000Rs. || 3000 Rs. || 4000 Rs.

Convext Time Budget (CTB) Experiment (cont'd)

Answer sheet for Test C-19

9 weeks
later->

18 weeks
later->

Option A

4000 Rs.

ORs.

Option B

3000 Rs.

1000 Rs.

Option C

2000 Rs.

2000 Rs.

Option D

1000 Rs.

3000 Rs.

Option E

ORs.

4000 Rs.

Assignment 4

Assignment: Non-Linear Least Square Estimation

Aim.

Task.

Validate the numerical solution to a nonlinear problem

Distributed data: w;, = {cl-,,q,c,-,thrkq,tq, kg, Py}
(i: individual, g: question)

Estimate the parameters 6 = (8, 6, @) by non-linear least
squares (NLLS):

. , 2
min ; [cie, — &(Ni =0, kygs Py; B, 6,)]

Try both derivative-based and detivative-free methods.

Feel free to use the SciPy optimization package.

Follow the practical advice to validate your result.

E.g.) Plot each parameter value and the objective function, fixing the
other parameter values at the estimated values.

124 /124

https://docs.scipy.org/doc/scipy/reference/optimize.html

	Nonlinear Equations
	Lab
	Assignment 3
	Optimization
	Lab
	Assignment 4

