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Introduction

• Many economic or econometric problems do not have
closed-form solutions.

• Two types of problems to numerically solve:
(1) Solving a set of equations
(2) Maximizing or minimizing an objective function

• Prioritize (1) and avoid (2) whenever possible, because
numerical optimization is costly in terms of:

(i) Computational time
(ii) Risk of missing the exact solution

• However, there are also many situations where numerical
optimization is necessary for solving problems.
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Motivating Eg. from Applied Microeconomics

• BLP random coefficient logit demand models
• “BLP”: Berry, Levinsohn, and Pakes (1995 ECTA)

“Automobile prices in market equilibrium”
• Influential research in industrial organization and widely

imported by other fields (trade, urban, education, health,
development, etc)

• Illustrate the estimation of nonlinear models, where the
objective funciton may not be globally concave or convex

• Illustrate the practicality of a wide range of numerical methods
(nonlinear equation solving; numerical optimization; numerical
differentiation; numerical integration)

• To study BLP, let’s first review the homogeneous logit (white board)

• Recommended: Train “Discrete Choice Methods with Simulation”
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BLP RC-logit Demand Model: Setup

• Consumer 𝑖’s utility from product 𝑗 in market 𝑡:
𝑢𝑖 𝑗 𝑡 = 𝑥 𝑗 𝛽𝑖 − 𝛼𝑖𝑝 𝑗 𝑡 + 𝜉 𝑗 𝑡 + 𝜀𝑖 𝑗 𝑡

where
• 𝑝 𝑗 𝑡 : price of product 𝑗 in market 𝑡
• 𝑥 𝑗 : row vec. of non-price characteristics of 𝑗
• 𝜉 𝑗 𝑡 : product- & market-specific demand shock
E[𝜉 𝑗 𝑡 |𝑝 𝑗 𝑡 , 𝑥 𝑗 ] ≠ 0: endogeneity of prices

• Discrete choice model: Each consumer chooses one product
𝑗 ∈ 1, . . . , 𝐽 in the market or an outside option 𝑗 = 0 with
𝑢𝑖0𝑡 = 𝜀𝑖0𝑡 , which maximizes his/her utility

• Sources of consumer heterogeneity:
• 𝜀𝑖 𝑗 𝑡 ∼𝑖.𝑖.𝑑 Type I extreme value distribution
• (𝛼𝑖, 𝛽𝑖) ∼ 𝑁 (𝜇,Σ)

5 / 124



Nonlinear Equations Lab Assignment 3 Optimization Lab Assignment 4

BLP RC-logit Demand Model: Setup

• Consumer 𝑖’s utility from product 𝑗 in market 𝑡:
𝑢𝑖 𝑗 𝑡 = 𝑥 𝑗 𝛽𝑖 − 𝛼𝑖𝑝 𝑗 𝑡 + 𝜉 𝑗 𝑡 + 𝜀𝑖 𝑗 𝑡

where
• 𝑝 𝑗 𝑡 : price of product 𝑗 in market 𝑡
• 𝑥 𝑗 : row vec. of non-price characteristics of 𝑗
• 𝜉 𝑗 𝑡 : product- & market-specific demand shock
E[𝜉 𝑗 𝑡 |𝑝 𝑗 𝑡 , 𝑥 𝑗 ] ≠ 0: endogeneity of prices

• Discrete choice model: Each consumer chooses one product
𝑗 ∈ 1, . . . , 𝐽 in the market or an outside option 𝑗 = 0 with
𝑢𝑖0𝑡 = 𝜀𝑖0𝑡 , which maximizes his/her utility

• Sources of consumer heterogeneity:
• 𝜀𝑖 𝑗 𝑡 ∼𝑖.𝑖.𝑑 Type I extreme value distribution
• (𝛼𝑖, 𝛽𝑖) ∼ 𝑁 (𝜇,Σ)

6 / 124



Nonlinear Equations Lab Assignment 3 Optimization Lab Assignment 4

BLP RC-logit Demand Model: Intuition

• Consumer heterogeneity in preferences over product
characteristics
⇒ Flexible substitution patterns across products (compared to
the simple homogeneous logit)

• Product- & market-specific demand shock unobserved by the
econometrician
⇒ Address endogeneity caused by this, employing IVs

• Estimate consumer demand of differentiated products (e.g.,
cars, cereals) using only widely available aggregate data at the
market level
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BLP RC-logit Demand Model: Estimation

Step 0 Guess parameter values

Step 1 Define a function that, given 𝜉 𝑗 𝑡 , predicts market share:

𝑆 𝑗 𝑡 =

∫ exp(𝑥 𝑗 𝛽𝑖 − 𝛼𝑖𝑝 𝑗 𝑡 + 𝜉 𝑗 𝑡)∑
𝑘 exp(𝑥𝑘 𝛽𝑘 − 𝛼𝑘 𝑝𝑘𝑡 + 𝜉𝑘𝑡)

𝑑𝐹 (𝛼, 𝛽)

by numerical integration

Step 2 Solve for {𝜉 𝑗 𝑡}
s.t. Predicted market share = Observed market share
by nonlinear equation solving

Step 3 Construct the GMM objective function using instruments

Step 4 Repeat Step 0. – Step 3. for minimizing the GMM objective
function by numerical optimization to estimate parameter
values (& SE by numerical differentiation)
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Motivation

Economic equilibrium is often characterized by systems
of nonlinear equations. For example,

• 𝑧(p) = 0: System of excess demands with the price
vector p in general equilibrium

• Set of FOCs as conditions for Nash equilibria of
games with continuous strategies
(e.g., Cournot competition)

• 𝑘∗ = 𝑓 (𝑘∗): Finding a fixed point
(e.g., Steady state of dynamic models; Value function
iteration)

10 / 124



Nonlinear Equations Lab Assignment 3 Optimization Lab Assignment 4

Overview

• Bisection method

• Newton’s method

• Secant & Broyden’s methods

• As a fixed-point problem

• As a minimization problem

• SciPy optimization package (tutorial)

• Further reading: Judd, Chapter 5
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https://docs.scipy.org/doc/scipy/reference/optimize.html
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Bisection Method: Algorithm

• Based on the Intermediate Value Theorem:
𝑓 : R→ R continuous and 𝑓 (𝑎) < 0 < 𝑓 (𝑏)
Then, ∃ 𝑐 ∈ (𝑎, 𝑏) s.t. 𝑓 (𝑐) = 0

Step 0 Find 𝑥𝐿 & 𝑥𝑅 s.t. 𝑓 (𝑥𝐿) 𝑓 (𝑥𝑅) < 0
Choose stopping criterion1: 𝜖 or 𝛿

Step 1 Compute midpoint: 𝑥𝑀 = (𝑥𝐿 + 𝑥𝑅)/2

Step 2 Update 𝑥𝐿 = 𝑥𝐿 & 𝑥𝑅 = 𝑥𝑀 if 𝑓 (𝑥𝐿) 𝑓 (𝑥𝑀) < 0
Update 𝑥𝐿 = 𝑥𝑀 & 𝑥𝑅 = 𝑥𝑅 if 𝑓 (𝑥𝐿) 𝑓 (𝑥𝑀) > 0

Step 3 Check stopping criterion:
If 𝑥𝑅 − 𝑥𝐿 ≤ 𝜖 (1 + |𝑥𝐿 | + |𝑥𝑅 |) or | 𝑓 (𝑥𝑀) | ≤ 𝛿,

stop and report the solution at 𝑥𝑀
Otherwise, go back to Step 1 again
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Bisection Method: Pros and Cons

Pros:
• The simplest and most robust method

• Simplicity: only requires continuity of function
• Robustness: as long as 𝑓 (𝑥𝐿) 𝑓 (𝑥𝑅) < 0, it achieves

global convergence with any initial guesses (in case
there is only a single root)

Cons:
• Applicable only to 1-dim rootfinding problems
• Slow: require more iterations than other methods,

because it ignores information on the function’s
curvature
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Newton’s Method

• Take advantage of information on derivatives of a function
(Recall: Bisection method used only continuity of a function)

• Reduce a nonlinear problem to a sequence of linear problems,
where zeros are easy to compute

• 0 = 𝑓 (𝑥∗) ≈ 𝑓 (𝑥𝑘 ) + (𝑥∗ − 𝑥𝑘 ) 𝑓 ′(𝑥𝑘 ) ≡ 𝑔(𝑥𝑘 )

• Instead of solving 𝑓 (𝑥) = 0, solve 𝑔(𝑥) = 0

• Trade-off: Compared to bisection, faster when it works, but
may not always converge
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Newton’s Method

(Judd, Chapter 5 & Collard’s lecture note)
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Newton’s Method: Algorithm

Step 0 Set 𝑥𝑘 with 𝑘 = 0
Choose stopping criteria: 𝜖 & 𝛿

Step 1 Compute 𝑥𝑘+1 = 𝑥𝑘 − 𝑓 (𝑥𝑘 )
𝑓 ′(𝑥𝑘 )

Step 2 Check stopping criterion:
If |𝑥𝑘 − 𝑥𝑘+1 | ≤ 𝜖 (1 + |𝑥𝑘+1 |), go to Step 3.
Otherwise, go back to Step 1.

Step 3 If | 𝑓 (𝑥𝑘+1) | ≤ 𝛿, report 𝑥∗ = 𝑥𝑘+1 as a solution.
Otherwise, report failure.

• Sufficient condition for convergence: 𝑥0 is sufficiently close to
𝑥∗, 𝑓 ′(𝑥∗) ≠ 0, and | 𝑓 ′′(𝑥∗)/ 𝑓 ′(𝑥∗) | < ∞.
(See Theorem 2.1. in Judd, Chapter 5)
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Remark. 𝑥0 should be sufficiently close to 𝑥∗

One practical way: First use bisection to obtain a crude
approximation for the root, and then shift to Newton.
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Newton’s Method (Multidimensional)

• 𝑓 : R𝑛 → R𝑛; 𝐽 𝑓 (): Jacobian of 𝑓 ()
0 = 𝑓 (x∗) ≈ 𝑓 (x𝑘 ) + 𝐽 𝑓 (x𝑘 ) (x∗ − x𝑘 )

Step 0 Set x𝑘 with 𝑘 = 0
Choose stopping criteria: 𝜖 & 𝛿

Step 1 Compute x𝑘+1 = x𝑘 − 𝐽 𝑓 (x𝑘 )−1 𝑓 (x𝑘 )

Step 2 Check stopping criterion:
If ‖x𝑘 − x𝑘+1‖ ≤ 𝜖 (1 + ‖x𝑘+1‖), go to Step 3.
Otherwise, go back to Step 1.

Step 3 If ‖ 𝑓 (x𝑘+1)‖ ≤ 𝛿, report x∗ = x𝑘+1 as a solution.
Otherwise, report failure.

Remark. Require det(𝐽 (𝑥∗)) ≠ 0
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Newton’s Method (Multidimensional)
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Secant Method

• Obtaining 𝑓 ′(𝑥𝑘 ) or Jacobian is costly to compute and code

• Secant method instead uses the simplest approximations of
𝑓 ′(𝑥𝑘 ) & 𝐽 𝑓 (x𝑘 ) by 𝑚𝑘 & 𝐴𝑘 s.t.
𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘−1) = 𝑚𝑘 (𝑥𝑘 − 𝑥𝑘−1) for one-dimensional

𝑓 (x𝑘 ) − 𝑓 (x𝑘−1) = 𝐴𝑘 (x𝑘 − x𝑘−1) for multi-dimensional

• Called Broyden’s method in a multidimensional case

• Set (𝑥0, 𝑥1) at the beginning

• Other processes and properties are similar to Newton’s method

• See Judd, Chapter 5 in detail
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As a Fixed-Point Problem

• Fixed-point problems arise frequently in economic
problems.

• Any fixed point problems: 𝑥 = 𝑔(𝑥)
can be cast as
a nonlinear-eq solving: 𝑓 (𝑥) ≡ 𝑥 − 𝑔(𝑥) = 0

• Some (not all) nonlinear-eq solving problems can be
cast as a fixed point problem
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Fixed-Point Iteration

(Miranda and Fackler, Chapter 3)
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Fixed-Point Iteration
• Compute a fixed point of 𝑥 = 𝑔(𝑥) (𝑔 : R→ R)
• Construct a sequence {𝑥𝑘 } s.t. 𝑥𝑘+1 = 𝑔(𝑥𝑘 )
• If it converges (lim𝑘→∞ 𝑥𝑘 = 𝑥∗), then 𝑥∗ = 𝑔(𝑥∗)

• Contraction mapping theorem: If there exists 𝑇 ∈ [0, 1) such
that |𝑔(𝑥) − 𝑔(𝑥′) | ≤ 𝑇 |𝑥 − 𝑥′| ∀𝑥, 𝑥′ ∈ 𝐷 ⊂ R, then 𝑥∗ is a
unique fixed point in 𝐷.

• Finding such 𝐷 is hard. In that case, a modified updating
scheme with extrapolation is preferable to stabilize:

𝑥𝑘+1 = 𝜆𝑘𝑥𝑘 + (1 − 𝜆𝑘 )𝑔(𝑥𝑘 )
where 𝜆𝑘 ∈ [0, 1] and lim𝑘→∞ 𝜆𝑘 = 0

• Trade-off between accuracy and speed exists
• On the other hand, if the original system is converging too

slowly, 𝜆𝑘 < 0 could be a way to accelerate convergence
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Fixed-Point Interation

impor t m a t p l o t l i b . p y p l o t as p l t
impor t numpy as np
from numpy . l i n a l g impor t norm
from s c i p y . o p t i m i z e impor t b i s e c t , newton

d e f f p i t e r ( g , x0 , t o l =10e −8, m a x i t e r =100):
””” F i xed p o i n t i t e r a t i o n ”””
e = 1 # e r r o r
i t e r = 0 # number o f i t e r a t i o n
x s e q = [ ] # s t o r e the sequence
w h i l e ( e > t o l and i t e r < m a x i t e r ) :
###You w i l l code by y o u r s e l f i n the l a b s e s s i o n###

r e t u r n x , x s e q

d e f f p i t e r r e v ( g , x0 , lambda k , t o l =10e −8, m a x i t e r =100):
””” F i xed p o i n t i t e r a t i o n wi th a l t e r n a t i v e updat i ng scheme ”””
###You w i l l code by y o u r s e l f i n the l a b s e s s i o n###

r e t u r n x , x s e q

g1 = lambda x : np . s q r t ( x ) # E . g . 1 )
x i n i t = .25
x1 fp , x 1 s e q = f p i t e r ( g1 , x i n i t )

g2 = lambda x : x ∗∗2 − 1 # E . g . 2 )
x i n i t = −0.5
l a m b d a i n i t = 0 .99
x2 fp , x 2 s e q = f p i t e r ( g2 , x i n i t )
x 2 f p r e v , x 2 s e q r e v = f p i t e r r e v ( g2 , x i n i t , l a m b d a i n i t )
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E.g.1) Convergence by the Benchmark Scheme

I n [ 1 ] : x 1 s e q
Out [ 1 ] :
a r r a y ( [ 0 . 5 , 0 .70710678 , 0 .84089642 , 0 .91700404 , 0 .95760328 ,

0 .97857206 , 0 .98922801 , 0 .99459942 , 0 .99729606 , 0 .99864711 ,
0 .99932333 , 0 .99966161 , 0 .99983079 , 0 .99991539 , 0 .99995769 ,
0 .99997885 , 0 .99998942 , 0 .99999471 , 0 .99999736 , 0 .99999868 ,
0 .99999934 , 0 .99999967 , 0 .99999983 , 0 . 9 9 9 9 9 9 9 2 ] )



E.g.1) Slower Convergence by the Modified Scheme

I n [ 1 ] : x 1 s e q r e v
Out [ 1 ] :
a r r a y ( [ 0 . 2 5 2 5 , 0 .25747488 , 0 .26489849 , 0 .27474099 , 0 .28696488 ,

0 .3015203 , 0 .31834012 , 0 .33733537 , 0 .35839136 , 0 .38136516 ,
0 .40608443 , 0 .43234806 , 0 .45992833 , 0 .4885748 , 0 .51801943 ,
0 .54798281 , 0 .57818103 , 0 .60833281 , 0 .63816647 , 0 .66742641 ,
0 .69587881 , 0 .72331621 , 0 .749561 , 0 .77446754 , 0 .79792312 ,
0 .81984774 , 0 .84019279 , 0 .85893899 , 0 .87609352 , 0 .89168681 ,
0 .90576896 , 0 .91840611 , 0 .92967684 , 0 .93966874 , 0 .94847527 ,
0 .95619295 , 0 .96291894 , 0 .96874895 , 0 .97377564 , 0 .9780873 ,
0 .98176696 , 0 .98489171 , 0 .98753235 , 0 .98975326 , 0 .99161242 ,
0 .99316159 , 0 .99444663 , 0 .99550781 , 0 .9963803 , 0 .99709453 ,
0 .99767672 , 0 .99814927 , 0 .99853123 , 0 .9988387 , 0 .9990852 ,
0 .99928202 , 0 .99943855 , 0 .99956254 , 0 .99966037 , 0 .99973726 ,
0 .99979747 , 0 .99984442 , 0 .99988091 , 0 .99990916 , 0 .99993095 ,
0 .99994769 , 0 .9999605 , 0 .99997028 , 0 .99997771 , 0 .99998334 ,
0 .99998759 , 0 .99999079 , 0 .99999318 , 0 .99999497 , 0 .9999963 ,
0 .99999729 , 0 .99999802 , 0 .99999856 , 0 .99999895 , 0 .99999924 ,
0 .99999945 , 0 .99999961 , 0 .99999972 , 0 .9999998 , 0 .99999986 ,
0 .9999999 ] )



E.g.2) Convergence Failure by the Benchmark Scheme

I n [ 1 ] : x 2 s e q
Out [ 2 ] :
a r r a y ([ −9.37500000 e −01, −1.21093750e −01, −9.85336304e −01, −2.91123686e −02,

−9.99152470e −01, −1.69434170e −03, −9.99997129e −01, −5.74157937e −06,
−1.00000000 e +00, −6.59314825e −11, −1.00000000 e +00, 0 .00000000 e +00,
−1.00000000 e +00, 0 .00000000 e +00, −1.00000000 e +00, 0 .00000000 e +00,
−1.00000000 e +00, 0 .00000000 e +00, −1.00000000 e +00, 0 .00000000 e +00,
−1.00000000 e +00, 0 .00000000 e +00, −1.00000000 e +00, 0 .00000000 e +00,
−1.00000000 e +00, 0 .00000000 e +00, −1.00000000 e +00, 0 .00000000 e +00,
−1.00000000 e +00, 0 .00000000 e +00, −1.00000000 e +00, 0 .00000000 e +00,
−1.00000000 e +00, 0 .00000000 e +00, −1.00000000 e +00, 0 .00000000 e +00,
−1.00000000 e +00, 0 .00000000 e +00, −1.00000000 e +00, 0 .00000000 e +00,
−1.00000000 e +00, 0 .00000000 e +00, −1.00000000 e +00, 0 .00000000 e +00,
−1.00000000 e +00, 0 .00000000 e +00, −1.00000000 e +00, 0 .00000000 e +00,
−1.00000000 e +00, 0 .00000000 e +00, −1.00000000 e +00, 0 .00000000 e +00,
−1.00000000 e +00, 0 .00000000 e +00, −1.00000000 e +00, 0 .00000000 e +00,
−1.00000000 e +00, 0 .00000000 e +00, −1.00000000 e +00, 0 .00000000 e +00,
−1.00000000 e +00, 0 .00000000 e +00, −1.00000000 e +00, 0 .00000000 e +00,
−1.00000000 e +00, 0 .00000000 e +00, −1.00000000 e +00, 0 .00000000 e +00,
−1.00000000 e +00, 0 .00000000 e +00, −1.00000000 e +00, 0 .00000000 e +00,
−1.00000000 e +00, 0 .00000000 e +00, −1.00000000 e +00, 0 .00000000 e +00,
−1.00000000 e +00, 0 .00000000 e +00, −1.00000000 e +00, 0 .00000000 e +00,
−1.00000000 e +00, 0 .00000000 e +00, −1.00000000 e +00, 0 .00000000 e +00,
−1.00000000 e +00, 0 .00000000 e +00, −1.00000000 e +00, 0 .00000000 e +00,
−1.00000000 e +00, 0 .00000000 e +00, −1.00000000 e +00, 0 .00000000 e +00,
−1.00000000 e +00, 0 .00000000 e +00, −1.00000000 e +00, 0 .00000000 e +00,
−1.00000000 e +00, 0 .00000000 e +00, −1.00000000 e +00, 0 .00000000 e +00])



E.g.2) Convergence by the Modified Scheme

I n [ 1 ] : x 2 s e q r e v
Out [ 1 ] :
a r r a y ([ −0.256875 , −0.27035009 , −0.2898506 , −0.31452286 , −0.34326977 ,

−0.37480589 , −0.40773481 , −0.44064692 , −0.47222899 , −0.50137054 ,
−0.52724889 , −0.54937654 , −0.5676025 , −0.58206998 , −0.5931428 ,
−0.60131839 , −0.60714485 , −0.61115463 , −0.6138204 , −0.61553283 ,
−0.61659578 , −0.61723331 , −0.61760269 , −0.61780934 , −0.61792094 ,
−0.61797907 , −0.61800825 , −0.61802237 , −0.61802894 , −0.61803188 ,
−0.61803314 , −0.61803366 , −0.61803387 , −0.61803395 , −0.61803397])
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Fixed-Point Iteration (Multidimensional)

• Fixed point problem in a multidimensional system with
𝑔 : R𝑛 → R𝑛

𝑥1 = 𝑔1(𝑥1, ... , 𝑥𝑛)
...

𝑥𝑛 = 𝑔𝑛 (𝑥1, ... , 𝑥𝑛)

• Construct a sequence {x𝑘 } s.t. x𝑘+1 = 𝑔(x𝑘 )

• Contraction mapping theorem applies.
(Check the properties related to Jacobian.)

• The modified updating scheme can also be used similarly to
the single-dimensional case
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Anderson Acceleration for Fixed-Point Iterations

• Alleviates the potential concern of slow convergence or
divergence associated with the standard FP iteration

• This nests the standard FP iteration, i.e., equivalent under
some parameter values

• See Walker and Ni (2011) for detail

• Both Python (Scipy) and Julia (NLsolve.jl) contain the
package to implement the Anderson Acceleration
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Other Elementary Methods for a Multidimensional System

Instead of solving 𝑛 equations for 𝑛 unknowns, repeatedly solve each
one of 𝑛 equations with one unknown in turn:

• Gauss-Jacobi Algorithm

• Gauss-Seidel Algorithm
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Toward Convergence

• The convergence is not guaranteed in most methods for a
multi-dimensional system

• Sensitive to initial guesses, but often difficult to find good ones

• Obtain better initial guesses from optimization ideas:
• Optimization problems are less sensitive to initial guesses
• One simple way is to obtain a rough guess of 𝑓 (x) = 0 by solving

min𝑥
∑𝑛
𝑖=1 𝑓

𝑖 (x)2 with a loose stopping rule
• (We cover optimization algorithms in the next section)

• Continuation methods: Construct a sequence of problems
(each of which is reasonably solvable) that ultimately leads to
the problem of interest
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Exercise
Aim. Get accustomed to basic one-dimensional methods for solving a

non-linear equation
• 𝑓 (𝑥) ≡ exp((𝑥 − 2)2) − 2 − 𝑥
𝑔(𝑥) ≡ exp((𝑥 − 2)2) − 2

• Solve 𝑓 (𝑥) = 0 or 𝑥 = 𝑔(𝑥) over the domain 𝑥 ∈ [0, 2]
Tasks.

1. Solve 𝑓 (𝑥) = 0 by the bisection method with initial 𝑥𝐿 = 0.5 & 𝑥𝑅 = 1.5.
You can use the SciPy root-finding package.

2.1. Solve 𝑥 = 𝑔(𝑥) by the fixed-point iteration with the updating rule
𝑥𝑘+1 = 𝑔(𝑥𝑘 ). Code the algorithm by yourself.
Does this work? Explain why or why not.

2.2. Solve 𝑥 = 𝑔(𝑥) by the fixed-point iteration with the updating rule
𝑥𝑘+1 = 𝜆𝑘𝑥𝑘 + (1 − 𝜆𝑘 )𝑔(𝑥𝑘 ) where 𝜆0 = 1 & 𝜆𝑘 = 0.99𝜆𝑘−1

• Using matplotlib.pyplot, plot the convergent sequence (like what we
saw in the lecture).
(Adapted from Collard, Lecture Notes 5. )
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Assignment: Cournot Duopoly Model
Aim. Get accustomed to basic multi-dimensional methods for solving a system

of non-linear equations. Vectorize the system.
• Quantity competition by 2 firms 𝑖 = 1, 2
• Inverse demand of a good: 𝑃(𝑞) = 𝑞−1/𝛼

• Cost function: 𝐶𝑖 (𝑞𝑖) = 1
2𝑐𝑖𝑞

2
𝑖

• Profit for each firm 𝑖: 𝜋𝑖 (𝑞1, 𝑞2) = 𝑃(𝑞1 + 𝑞2)𝑞𝑖 − 𝐶𝑖 (𝑞𝑖)
• Assume 𝑐1 = 0.6 & 𝑐2 = 0.8

Task 1. Solve for equilibrium 𝑞∗
𝑖

for 𝑖 = 1, 2 and 𝑃(𝑞∗1 + 𝑞∗2) with 𝛼 = 1.5 by
(1) Newton’s method: Code the algorithm by yourself. That is,

analytically derive the Jacobian of the set of FOCs.
(2) Broyden’s method: You can use the SciPy root-finding package.
(3) Fixed-point iteration: Code the algorithm by yourself.

Task 2. Solve the model for all 𝛼 ∈ [1, 3] (construct grids) by Broyden’s method.
Using matplotlib.pyplot, produce two plots with 𝑥-axis 𝛼 & 𝑦-axes (i)
𝑞∗1, 𝑞

∗
2 (ii) 𝑃(𝑞∗1 + 𝑞∗2).
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Note for Non-Economics Students
• Imperfect competition: There are only two firms in the

market. Each firm’s quantity decision impacts the market price
via consumer demand structure.

• The first order condition of firm 𝑖’s profit maximization
problem (given the other firm’s decision):

𝜕𝜋𝑖

𝜕𝑞𝑖
= 𝑃(𝑞1 + 𝑞2) + 𝑃′(𝑞1 + 𝑞2)𝑞𝑖 − 𝐶′

𝑖 (𝑞𝑖) = 0

• The equilibrium condition is that both the following equalities
hold simultaneously:

𝑓1(𝑞1, 𝑞2) ≡ (𝑞1 + 𝑞2)−
1
𝛼 − 1

𝛼
(𝑞1 + 𝑞2)−

1
𝛼
−1𝑞1 − 𝑐1𝑞1 = 0

𝑓2(𝑞1, 𝑞2) ≡ (𝑞1 + 𝑞2)−
1
𝛼 − 1

𝛼
(𝑞1 + 𝑞2)−

1
𝛼
−1𝑞2 − 𝑐2𝑞2 = 0

• Numerically solve for the equilibrium 𝑞∗1 & 𝑞∗2.
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Numerical Optimization: Motivation

• Optimization is ubiquitous in economics and
econometrics

• Economic problems: Consumer’s utility
maximization, Firm’s profit maximization and cost
minimization, Social planner’s total surplus
maximization, etc

• Econometric problems: Minimizing the sum of
squared errors, Minimizing the GMM objective
function, Maximizing the likelihood function, etc
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Numerical Optimization: Remarks

• Numerical optimization is costly in terms of:
(i) Computation time
(ii) Risk of missing the exact solution

Hence, avoid it whenever possible

(i): Check if solving a set of equations suffices to solve the whole
problem, which saves comuputation time. E.g.:

• Convex optimization problems in which KKT conditions
are sufficient for optimization

• Exactly identified case in GMM
• Choosing just a faster optimization algorithm is also dangerous

due to (ii).
• Important to understand the trade-off between accuracy and

speed across different optimization algorithms.
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Remarks

• Optimization is costly in terms of
(i) Computation time
(ii) Risk of missing the exact solution

Hence, avoid it whenever possible

(ii): Any optimization algorithm finds local optimum, but there is
no guarantee that global optimum is found (unless the
objective function is globally concave or convex).

Obtained solutions are susceptible to:
• Search algorithms
• Initial guesses
• Stopping rules
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Example of (i): Fajgelbaum & Schaal (2020 ECTA)

• Fajgelbaum & Schaal (2020 ECTA) “Optimal Transport
Networks in Spatial Equilibrium”

Q. How large are the gains from expansion and the losses from
misallocation of current road networks in Europe?

• An example of an economically simple, but a computationally
hard problem

• Also, an example of research in which quantification is of first
order importance

• Illustrate the importance of caring about computational
burden in a large-scale problem
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The problem of optimally designing the road network is determining how much
to invest in each link.



Fajgelbaum & Schaal (2020): Environment
Geography:

• J = {1, ... , 𝐽}: locations (nodes)
• N ( 𝑗): set of connected location of 𝑗

Goods can be directly shipped only through connected locations
• 𝐿 𝑗 : Number of workers in 𝑗 , immobile across locations
𝐿: Total number of workers

Commodities:
• 𝑌𝑛

𝑗
= 𝑧𝑛

𝑗
𝐿𝑛
𝑗
: tradable good production for sector 𝑛

• 𝐻 𝑗 : the non-tradable good endowment (constant)
ℎ 𝑗 = 𝐻 𝑗/𝐿 𝑗 : per-capita consumption of the non-traded good

• 𝐶 𝑗 =

( ∑𝑁
𝑛=1 (𝐶𝑛𝑗 )

𝜎−1
𝜎

) 𝜎
𝜎−1

𝑐 𝑗 = 𝐶 𝑗/𝐿 𝑗 : per-capita consumption of traded goods bundle

Preference:
• 𝑈 (𝑐, ℎ): worker’s utility (homothetic and concave)
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Network Building & Transport Technologies
• 𝐼 𝑗𝑘 : Infrastructure (roads) along the link 𝑗 𝑘

Def “Transport network” = Distribution of {𝐼 𝑗𝑘 } 𝑗∈J,𝑘∈N( 𝑗)

• K: total resource for building infrastructure
Building 𝐼 𝑗𝑘 requires investment 𝛿𝐼

𝑗𝑘
𝐼 𝑗𝑘 units of 𝐾

• 𝑄𝑛
𝑗𝑘

: Quantity of good 𝑛 shipped from 𝑗 to 𝑘 ∈ N ( 𝑗)

• Transporting one unit of good 𝑛 from 𝑗 to 𝑘 ∈ N ( 𝑗) requires 𝜏𝑛
𝑗𝑘

units of
good 𝑛 , i.e., “Iceberg cost” = 1 + 𝜏𝑛

𝑗𝑘
, where

𝜏𝑛𝑗𝑘 = 𝜏𝑗𝑘 (𝑄
𝑛
𝑗𝑘 , 𝐼 𝑗𝑘 ) = 𝛿

𝜏
𝑗𝑘

(𝑄𝑛
𝑗𝑘
)𝛽

(𝐼 𝑗𝑘 )𝛾

𝛿𝜏
𝑗𝑘

: geographic frictions
(e.g., distance, elevation, ruggedness, river, etc)
𝛽, 𝛾 > 0: decreasing returns to transport (congestion force) & positive
returns to infrastructure

• Total transport costs 𝑄𝑛
𝑗𝑘
𝜏𝑗𝑘 (𝑄𝑛𝑗𝑘 , 𝐼 𝑗𝑘 ) are jointly convex over 𝑄𝑛

𝑗𝑘
and

𝐼 𝑗𝑘 iff 𝛽 ≥ 𝛾
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Fajgelbaum and Schaal (2020): Social Planner’s Problem

SP’s problem consists of three subproblems:

• Optimal Allocation (given infrastracture and goods flow):

• Optimal Transport (given infrastructure)

• Optimal Infrastructure Network Design
(= the full problem)
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𝑊 = max
{𝑐 𝑗 ,ℎ 𝑗 ,{𝐼 𝑗𝑘 }𝑘∈N( 𝑗) ,𝐶

𝑛
𝑗
,𝐿𝑛

𝑗
,{𝑄𝑛

𝑗𝑘
}𝑘∈N( 𝑗) }

∑︁
𝑗

𝜔 𝑗𝐿 𝑗𝑈 (𝑐 𝑗 , ℎ 𝑗 )

= max
{𝐼 𝑗𝑘 }𝑘∈N( 𝑗)

max
{𝑄𝑛

𝑗𝑘
}𝑘∈N( 𝑗)

max
{𝑐 𝑗 ,ℎ 𝑗 ,𝐶

𝑛
𝑗
,𝐿𝑛

𝑗
}

∑︁
𝑗

𝜔 𝑗𝐿 𝑗𝑈 (𝑐 𝑗 , ℎ 𝑗 )︸                                         ︷︷                                         ︸
Optimal allocation subproblem︸                                                           ︷︷                                                           ︸

Optimal transport subproblem︸                                                                           ︷︷                                                                           ︸
Optimal infrastructure network design problem

s.t. (i) Availability of tradable & non-tradable goods:
𝑐 𝑗𝐿 𝑗 ≤ 𝐶 𝑗 & ℎ 𝑗𝐿 𝑗 ≤ 𝐻 𝑗 ∀ 𝑗

(ii) Balanced-flows constraint:
𝐶𝑛

𝑗︸︷︷︸
Consumption

+
∑︁

𝑘∈N( 𝑗)
(1 + 𝜏 𝑗𝑘 (𝑄𝑛

𝑗𝑘
, 𝐼 𝑗𝑘 ))𝑄𝑛

𝑗𝑘︸                                      ︷︷                                      ︸
Exports

≤ 𝑌 𝑛
𝑗︸︷︷︸

Production

+
∑︁

𝑖∈N( 𝑗)
𝑄𝑛

𝑖 𝑗︸       ︷︷       ︸
Imports

∀𝑛, 𝑗

(iii) Network-building constraint:∑︁
𝑗

∑︁
𝑘∈N( 𝑗)

𝛿𝐼𝑗𝑘 𝐼 𝑗𝑘 ≤ 𝐾

(iv) Local labor market clearing
(v) Non-negativity constraints on consumption, flows, and factor use
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Fajgelbaum & Schaal (2020): Social Planner’s Problem

SP’s problem consists of three subproblems:

• Optimal Allocation (given infrastracture and goods flow)

• Optimal Transport (given infrastructure)

• Optimal Infrastructure Network Design
(= the full problem)

The full problem is globally convex if the transport costs are jointly
convex, i.e., if 𝛽 ≥ 𝛾
(review the 1st year math!)
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Fajgelbaum & Schaal (2020): Numerical Implementation
Convex cases (𝛽 ≥ 𝛾):

• KKT conditions are both necessary and sufficient
• Numerically tractable

Non-Convex cases (𝛽 < 𝛾):
• The above approach is not guaranteed to find the global

optimum
• Optimal transport and allocation subproblems are convex if
𝑄𝜏𝑗 𝑘 (𝑄, 𝐼 𝑗 𝑘 ) is convex in 𝑄, i.e., if 𝛽 ≥ 0

• Iterative procedure over the infrastructure investments:
• Guess on the network investment 𝐼 𝑗 𝑘
• Solve for the optimum over {𝑐 𝑗 , 𝐶𝑛𝑗 , ℎ 𝑗 , 𝐿𝑛𝑗 , 𝑄𝑛𝑗 𝑘 }
• Obtain a new guess over 𝐼 𝑗 𝑘
• Repeat until convergence...
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Example of (ii): BLP Again

• Consumer 𝑖’s utility from product 𝑗 in market 𝑡:
𝑢𝑖 𝑗 𝑡 = 𝑥 𝑗 𝛽𝑖 − 𝛼𝑖𝑝 𝑗 𝑡 + 𝜉 𝑗 𝑡 + 𝜖𝑖 𝑗 𝑡

where
• 𝑝 𝑗 𝑡 : price of product 𝑗 in market 𝑡
• 𝑥 𝑗 : row vec. of non-price characteristics of 𝑗
• 𝜉 𝑗 𝑡 : product- & market-specific demand shock
E(𝜉 𝑗 𝑡 |𝑝 𝑗 𝑡 , 𝑥 𝑗 ) ≠ 0: endogeneity of prices

• Discrete choice model: Each consumer chooses one product
𝑗 ∈ 1, . . . , 𝐽 in the market or an outside option 𝑗 = 0 with
𝑢𝑖0𝑡 = 𝜖𝑖0𝑡 , which maximizes his/her utilit

• Sources of consumer heterogeneity:
• 𝜖𝑖 𝑗 𝑡 ∼𝑖.𝑖.𝑑 Type I extreme value distribution
• (𝛼𝑖, 𝛽𝑖) ∼ 𝑁 (𝜇,Σ)
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Example of (ii): BLP Again

• Here I follow Knittel and Metaxoglou (2014 REStat) which
emphasize numerical challenges of BLP RC-logit demand
models

• Illustrates with the BLP RC-logit demand model that different
combinations of search algorithms, initial guesses, and
stopping rules lead to convergences at different optima

• Observed convergences at:
• Points where 1st- and 2nd- order conditions fail!
• Local optima

• Also, observed convergence failure in some instances
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Summary

• Optimization is costly in terms of
(i) Computation time
(ii) Risk of missing the exact solution

Hence, avoid it whenever possible

(i): Check if solving a set of equations suffices to solve the whole
problem, which saves comuputation time.

(ii): Any optimization algorithm finds local optimum, but there is
no guarantee that global optimum is found (unless the
objective function is globally concave or convex).

• Understand the trade-off between accuracy and speed across
different optimization algorithms.
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3 Types of Methods

• Derivative-based methods (1st order):
• Require differentiability
• Uses information about gradients

• Derivative-based methods (2nd order):
• Uses information about gradients and curvature
• Converges more rapidly to the solution
• High cost of computing and storing Hessians

• Derivative-free methods (0th order):
• Slow
• Suitable for problems with kinks and discontinuities

• Trade-off: Higher order methods are speedier, while lower
order methods give more accurate solutions
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Several Common Methods

• Derivative-based methods
• Bisection method (1st order)
• Newton’s method (2nd order)
• Quasi-Newton method (2nd order)

• Derivative-free methods
• Grid search method
• Bracket method
• Golden section search method
• Nelder-Mead method

• Constrained optimization
• Penalty function method
• Sequential least squares programming (Derivative-based)
• By linear approximation (Derivative-free)

• SciPy optimization package (tutorial)
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Derivative-Based Methods



Bisection Method (1st order)

• Similar logic to the bisection in non-linear equation solving,
based on the Intermediate Value Theorem

Step 0 Find 𝑥𝐿 & 𝑥𝑅 s.t. 𝑓 ′(𝑥𝐿) 𝑓 ′(𝑥𝑅) < 0
Choose stopping criterion2: 𝜖 or 𝛿

Step 1 Compute midpoint: 𝑥𝑀 = (𝑥𝐿 + 𝑥𝑅)/2

Step 2 Update 𝑥𝐿 = 𝑥𝐿 & 𝑥𝑅 = 𝑥𝑀 if 𝑓 ′(𝑥𝐿) 𝑓 ′(𝑥𝑀) < 0
Update 𝑥𝐿 = 𝑥𝑀 & 𝑥𝑅 = 𝑥𝑅 if 𝑓 ′(𝑥𝐿) 𝑓 ′(𝑥𝑀) > 0

Step 3 Check stopping criterion:
If 𝑥𝑅 − 𝑥𝐿 ≤ 𝜖 (1 + |𝑥𝐿 | + |𝑥𝑅 |) or | 𝑓 ′(𝑥𝑀) | ≤ 𝛿,

stop and report the solution at 𝑥𝑀
Otherwise, go back to Step 1 again



Nonlinear Equations Lab Assignment 3 Optimization Lab Assignment 4

Newton’s Method (2nd order)

• Similar logic to Newton’s method in non-linear equation solving

• 𝑓 (𝑥) ≈ 𝑓 (𝑥𝑘 ) + 𝑓 ′(𝑥𝑘 ) (𝑥 − 𝑥𝑘 ) + 𝑓 ′′(𝑥𝑘 )
2 (𝑥 − 𝑥𝑘 )2

• FOC: 0 = 𝑓 ′(𝑥∗) ≈ 𝑓 ′(𝑥𝑘 ) + (𝑥∗ − 𝑥𝑘 ) 𝑓 ′′(𝑥𝑘 )

Step 0 Set 𝑥𝑘 with 𝑘 = 0
Choose stopping criteria: 𝜖 & 𝛿

Step 1 Compute 𝑥𝑘+1 = 𝑥𝑘 − 𝑓 ′(𝑥𝑘 )
𝑓 ′′(𝑥𝑘 )

Step 2 Check stopping criterion:
If |𝑥𝑘 − 𝑥𝑘+1 | ≤ 𝜖 (1 + |𝑥𝑘+1 |), go to Step 3.
Otherwise, go back to Step 1.

Step 3 If | 𝑓 ′(𝑥𝑘+1) | ≤ 𝛿, report 𝑥∗ = 𝑥𝑘+1 as a solution.
Otherwise, report failure.
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Eg.1) Local & Global Optimum



Eg.1) Initial Guess Matters
impor t m a t p l o t l i b . p y p l o t as p l t
impor t numpy as np
impor t s c i p y
from s c i p y . o p t i m i z e impor t min im ize

o b j 1 = lambda x : x∗∗4−5∗(x∗∗2)−x
a rgmin 1 1 = min imize ( ob j 1 , x0 =−0.5, method=’BFGS ’ ) # a quas i −newton ’ s method
a rgmin 1 2 = min imize ( ob j 1 , x0 =0.5 , method=’BFGS ’ )

I n [ 1 2 ] : a rgmin 1 1
Out [ 1 2 ] :

fun : −4.694706337665813
h e s s i n v : a r r a y ( [ [ 0 . 0 5 5 4 6 6 2 6 ] ] )

j a c : a r r a y ( [ −5.96046448e −08])
message : ’ O p t i m i z a t i o n t e r m i n a t e d s u c c e s s f u l l y . ’

n f e v : 18
n i t : 4

n j e v : 6
s t a t u s : 0

s u c c e s s : True
x : a r r a y ( [ −1 .52854364 ] )

I n [ 1 3 ] : a rgmin 1 2
Out [ 1 3 ] :

fun : −7.855394472077334
h e s s i n v : a r r a y ( [ [ 0 . 0 4 5 7 1 1 6 ] ] )

j a c : a r r a y ( [ −8.34465027e −07])
message : ’ O p t i m i z a t i o n t e r m i n a t e d s u c c e s s f u l l y . ’

n f e v : 21
n i t : 5

n j e v : 7
s t a t u s : 0

s u c c e s s : True
x : a r r a y ( [ 1 . 6 2 8 9 4 8 4 6 ] )



Eg.2) Too Small Changes in Gradients



Eg.2) Scaling Matters
impor t m a t p l o t l i b . p y p l o t as p l t
impor t numpy as np
impor t s c i p y
from s c i p y . o p t i m i z e impor t min im ize

o b j 2 = lambda x : x ∗∗4
o b j 2 t r a n s f o r m = lambda x : 10000∗ x ∗∗4

I n [ 1 2 ] : m in im ize ( ob j 2 , 10 , method=’BFGS ’ )
Out [ 1 2 ] :

fun : 1.1274113375014166 e−08
h e s s i n v : a r r a y ( [ [ 3 2 8 . 8 7 7 5 4 1 7 6 ] ] )

j a c : a r r a y ( [ 4 .37645767 e −06])
message : ’ O p t i m i z a t i o n t e r m i n a t e d s u c c e s s f u l l y . ’

n f e v : 78
n i t : 25

n j e v : 26
s t a t u s : 0

s u c c e s s : True
x : a r r a y ( [ 0 . 0 1 0 3 0 4 3 5 ] )

I n [ 1 3 ] : m in im ize ( o b j 2 t r a n s f o r m , 10 , method=’BFGS ’ )
Out [ 1 3 ] :

fun : 1.4693518450033662 e−09
h e s s i n v : a r r a y ( [ [ 9 . 1 0 9 6 7 0 9 6 ] ] )

j a c : a r r a y ( [ 9 .49336157 e −06])
message : ’ O p t i m i z a t i o n t e r m i n a t e d s u c c e s s f u l l y . ’

n f e v : 108
n i t : 35

n j e v : 36
s t a t u s : 0

s u c c e s s : True
x : a r r a y ( [ 0 . 0 0 0 6 1 9 1 3 ] )
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Newton’s Method (Multidimensional)

• 𝑓 : R𝑛 → R; 𝐻 𝑓 (): Hessian of 𝑓 ()
0 = ∇ 𝑓 (x∗) ≈ ∇ 𝑓 (x𝑘 ) + 𝐻 𝑓 (x𝑘 ) (x∗ − x𝑘 )

Step 0 Set x𝑘 with 𝑘 = 0
Choose stopping criteria: 𝜖 & 𝛿

Step 1 Compute x𝑘+1 = x𝑘 − 𝐻 𝑓 (x𝑘 )−1∇ 𝑓 (x𝑘 )

Step 2 Check stopping criterion:
If ‖x𝑘 − x𝑘+1‖ ≤ 𝜖 (1 + ‖x𝑘+1‖), go to Step 3.
Otherwise, go back to Step 1.

Step 3 If ‖∇ 𝑓 (x𝑘 )‖ ≤ 𝛿(1 + | 𝑓 (𝑥𝑘 ) |), report x∗ = x𝑘+1 as an optimum.
Otherwise, report failure.

• Converge quadratically to a local optimum.
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Newton’s Methods (Multidimensional): Caveats

• Calculating Hessian and its inverse is costly

• Also, Hessian must be well-conditioned:
• Invertible

• Positive semi-definiteness (in a minimization problem)
around the solution, so that the objective function value
is approached toward the solution in each Newton step

• However, no guarantee that the above conditions
hold, especially at points far from the solution
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Practical Methods for Multidimensional Cases

• Quasi-Newton methods: approximate a Hessian (or its
inverse) by a positive definite 𝐻𝑘 , guaranteeing that function
value can be decreased in the direction of the Newton step (in
a minimization problem), s.t.

𝐻−1
𝑘 (∇ 𝑓 (x𝑘+1)′ − ∇ 𝑓 (x𝑘 )′) = x𝑘+1 − x𝑘

Check several quasi-Newton methods with different updating
rules of {𝐻𝑘 } by yourself:

• Broyden-Fletcher-Goldfarb-Shanno (BFGS) method
• Davidson-Flecther-Powerl (DFP) method

• Conjugate Gradient Method (CGM): Store only a
gradient, while implicitly keeping track of curvature
information in a useful way without storing a Hessian

• See Judd, Chapter 4 in detail
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Derivative-Free Methods
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Grid Search Method

• Simplest and most primitive

• Credible global solution (if parameter space is sufficiently wide
and grids are not too coarse)

• Slow (especially for a high demensional case)

• Useful for understanding the shape of objective function:
• Unless you are aware of the functional form clearly

(which rarely happens), for whatever method you will
finally adopt, begin by plotting with this method

• That helps you to select which type of more
sophisticated method to adopt if necessary
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Nelder-Mead (Downhill Simplex) Method

• A widely-used derivative-free optimization method for
multi-dimensional functions

• 𝑓 : R𝑛 → R

• Begin by evaluating the objective function at 𝑛 + 1 points

• These points form a simplex in R

• Directly search for the optimum by moving this simplex with
several steps
(reflection; expansion; contraction; shirinkage)

Remark. Speedier than the grid search method (and much more
accurate than derivative-based methods), but not still perfect for
converging to a global solution. Try with several initial guesses.
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Illustration with 𝑛 = 2

(Miranda and Fackler, Chapter 4)



Illustration with 𝑛 = 2

(Lecture note by Fernández-Villaverde and Guerrón)
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Derivative-Based vs. Derivative-Free Methods

• Plot the objective function with some coarse grids to get a sense.
• If you are sure that the function is globally concave/convex, use a

derivative-based method.
(Check if different initial guesses actually globally converge.)

• Otherwise, go for a derivative-free method like Nelder-Mead.
(Again, check with different initial guesses.)

• Whatever method you finally adopt, check the robustness with the grid
search method in some reasonable range of parameters.

• Trade-off: In general, higher order methods (derivative-based) are
speedier, while lower order methods (derivative-free) methods tend to
give more accurate solutions

• Accuracy of derivative-free methods is not still perfect. (Eg. 1)
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Eg.1) (Again) Local and global optimum



Eg.1) Newton’s vs. Nelder-Mead

I n [ 1 2 ] : m in im ize ( ob j 1 , −0.1 , method=’BFGS ’ )
Out [ 1 2 ] :

fun : −7.855394472077359
h e s s i n v : a r r a y ( [ [ 4 1 9 . 3 3 3 8 2 0 8 ] ] )

j a c : a r r a y ( [ 1 .19209290 e −07])
message : ’ O p t i m i z a t i o n t e r m i n a t e d s u c c e s s f u l l y . ’

n f e v : 36
n i t : 2

n j e v : 12
s t a t u s : 0

s u c c e s s : True
x : a r r a y ( [ 1 . 6 2 8 9 4 8 5 ] )

I n [ 1 3 ] : m in im ize ( ob j 1 , −0.1 , method=’ Ne lder −Mead ’ )
Out [ 1 3 ] :

f i n a l s i m p l e x : ( a r r a y ( [ [ − 1 .52 851563 ] ,
[ − 1 .52 859375 ] ] ) , a r r a y ( [ −4.69470633 , −4.69470632]))

fun : −4.6947063305936503
message : ’ O p t i m i z a t i o n t e r m i n a t e d s u c c e s s f u l l y . ’

n f e v : 42
n i t : 21

s t a t u s : 0
s u c c e s s : True

x : a r r a y ( [ −1 .52851563 ] )
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Derivative-Based vs. Derivative-Free Methods

• Plot the objective function with some coarse grids to get a sense.
• If you are sure that the function is globally concave/convex, use a

derivative-based method.
(Check if different initial guesses actually globally converge.)

• Otherwise, go for a derivative-free medhod like Nelder-Mead.
(Again, check with different initial guesses.)

• Whatever method you finally adopt, check the robustness with the grid
search method in some reasonable range of parameters.

• Trade-off: In general, higher order methods (derivative-based) are
speedier, while lower order methods (derivative-free) methods tend to
give more accurate solutions

• Accuracy of derivative-free methods is NOT still perfect. (Eg. 1)
• Derivative-free methods are superior especially when there are

discontinuities in the objective function. In such cases, derivative-based
methods work very poorly. (Eg. 3)
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Eg.3) Discontinuities in the Objective Function

• 2-player public investment game
• Utility:
𝑢𝑖 (𝑥𝐴, 𝑥𝐵) =

(
2 − 𝑥𝑖 + 1l𝑥𝐴+𝑥𝐵≥3

3(𝑥𝐴+𝑥𝐵)
2

)𝜎
, 𝑖 = 𝐴, 𝐵

• Welfare: 𝑊 (𝑥𝐴, 𝑥𝐵) ≡ 𝑢𝐴 (𝑥𝐴, 𝑥𝐵) + 𝑢𝐵 (𝑥𝐴, 𝑥𝐵)
• Welfare-maximizer: (𝑥∗

𝐴
, 𝑥∗
𝐵
) = (2, 2)



Eg.3) Discontinuities in the Objective Function

• Utility:
𝑢𝑖 (𝑥𝐴, 𝑥𝐵) =

(
2 − 𝑥𝑖 + 1l𝑥𝐴+𝑥𝐵≥3

3(𝑥𝐴+𝑥𝐵)
2

)𝜎
, 𝑖 = 𝐴, 𝐵

• Welfare: 𝑊 (𝑥𝐴, 𝑥𝐵) ≡ 𝑢𝐴 (𝑥𝐴, 𝑥𝐵) + 𝑢𝐵 (𝑥𝐴, 𝑥𝐵)

impor t numpy as np
from s c i p y . o p t i m i z e impor t min im ize
impor t m a t p l o t l i b . p y p l o t as p l t
from m p l t o o l k i t s . mplot3d impor t Axes3D

d e f Inv W ( x ) :
x a = x [ 0 ]
x b = x [ 1 ]
s igma = 0 .7
i n v r e t u r n = np . where ( x a+x b >=3, 3∗( x a+x b ) , 0)
r e t u r n −(((2− x a ) + i n v r e t u r n /2)∗∗ sigma + ((2− x b ) + i n v r e t u r n /2)∗∗ sigma )

x a = np . a range (0 , 2 .0+0.1 , 0 . 1 )
x b = np . a range (0 , 2 .0+0.1 , 0 . 1 )
X a , X b = np . meshgr id ( x a , x b )
PG we l f a r e = −Inv W ( np . a r r a y ( [ X a , X b ] ) )

ax = Axes3D ( p l t . f i g u r e ( ) )
ax . s e t x l a b e l ( ” $x A$ ” )
ax . s e t y l a b e l ( ” $x B$ ” )
ax . s e t z l a b e l ( ”$W( x A , x B ) $” )
ax . p l o t w i r e f r a m e ( X a , X b , PG we l f a r e )
p l t . show ( )



Set up for a constrained optimization problem:
c o n s t r a i n t 1 = lambda x : x −0.0
c o n s t r a i n t 2 = lambda x : 2.0−x
cons t1 = ({ ’ t ype ’ : ’ i n e q ’ , ’ fun ’ : c o n s t r a i n t 1 })
cons t2 = ({ ’ t ype ’ : ’ i n e q ’ , ’ fun ’ : c o n s t r a i n t 2 })
c o n s t = [ const1 , cons t2 ]

Derivative-based (Sequential Least Squares Programming):
I n [ 1 2 ] : i n v i n i t = [ 1 . 4 9 , 1 . 4 9 ]

. . . : m in im ize ( Inv W , i n v i n i t , method=’SLSQP ’ , c o n s t r a i n t s=c on s t )
Out [ 1 2 ] :

fun : −3.2490095854249414
j a c : a r r a y ( [ 0 . 5 6 8 5 7 6 6 6 , 0 . 5 6 8 5 7 6 6 6 ] )

message : ’ O p t i m i z a t i o n t e r m i n a t e d s u c c e s s f u l l y . ’
n f e v : 12

n i t : 3
n j e v : 3

s t a t u s : 0
s u c c e s s : True

x : a r r a y ( [ 4 . 4 4 0 8 9 2 1 e −16, 0 .0000000 e +00])

Derivative-free (Constrained Optimization By Linear Approximation):
I n [ 1 3 ] : i n v i n i t = [ 1 . 1 , 1 . 1 ]

. . . : m in im ize ( Inv W , i n v i n i t , method=’COBYLA ’ , c o n s t r a i n t s=c on s t )
Out [ 1 3 ] :

fun : −7.010346004639045
maxcv : 3.535533905951738 e−05

message : ’ O p t i m i z a t i o n t e r m i n a t e d s u c c e s s f u l l y . ’
n f e v : 13

s t a t u s : 1
s u c c e s s : True

x : a r r a y ( [ 2 . 0 0 0 0 3 5 3 6 , 2 . 0 0 0 0 3 5 3 6 ] )
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Practical Advice: Solving
• First of all, judge if numerical optimization is really necessary

• Estimate the objective function with multiple optimization algorithms,
ideally from difference orders

• Try multiple stopping rules based on tight tolerances
• Try multiple initial guesses for parameter values:

• Based on prior information from economic theory
• Without such information, use random draws

• (For a very high dimensional problem,) divide the optimization problem in
hand in smaller dimensions:

• Split the paramter vector 𝜃 into 𝜃1 & 𝜃2
• Fix 𝜃1 and estimate 𝜃2
• With estimates of 𝜃2, estimate 𝜃1
• Iterate this process until the objective function value changes little
• Finally, simultaneously estimate 𝜃1 & 𝜃2

• Consider combining optimization algorithms:
• Grid search with coarse grids for guessing a reasonable range of parameter

values
• Then, use other faster methods to estimate the parameters
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Practical Advice: Validating
• Collect the sets of parameter estimates & objective function values
• Pick the parameter estimates which achieve the lowest objective function

value among the collected sets
• Make sure that the algorithm converges to the picked parameter

estimates

• Plot the objective function value against each of the parameters over an
interval around the estimated value, keeping the other parameters fixed
at the estimated values

⇒ Make sure it passes the “ocular” identification test
• Simulate a dataset given the estimated parameter values

⇒ Estimate the parameters given the simulated dataset and make sure that
the newly estimated parameters have the same values as the ones
obtained first

• Again, no perfect procedure for identifying global optima exists!
But think wisely for reducing the possibilities of failures!
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Source: Nittel & Metaxoglou (2014)
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Further Readings

There are still much more methods that this lecture has not covered.
Please see, for example:

• Judd, Chapter 4

• Note by Fernández-Villaverde & Guerrón

• Note by Todd Munson

• Knittel, Christopher R., and Konstantinos Metaxoglou.
“Estimation of random-coefficient demand models: two
empiricists’ perspective.” Review of Economics and Statistics
96.1 (2014): 34-59.

• Also, read SciPy documentations carefully
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https://www.sas.upenn.edu/~jesusfv/Lecture_NM_2_Optimization.pdf
https://web.archive.org/web/20150727035916/http://ice.uchicago.edu/2012_presentations/Faculty/Munson/seminar-1.pdf
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Exercise

Aim. Experience the imperfection of numerical optimization for
finding a global solution

Task. Minimize 𝑓 (𝑥) = 3𝑥4 − 5𝑥3 + 2𝑥2 by

1. (Quasi-)Newton’s and Nelder-Mead methods with initial
guesses
1.1. -0.25
1.2. 0
1.3. 0.25
1.4. 0.5
1.5. 0.75
1.6. 1

2. Grid search
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Setting: Quasi-hyperbolic discounting structure

• An application to a simple structural model
• Time preferences play important roles for various dynamic decisions.
• Not only discount factor, but also present biasness matters.

e.g.) I do not want to do my homework just now, so I allocate much
more study time to tomorrow. The ratio of study time between today
and a future day can differ from the planned ratio between two future
days with an equal interval.

• An individual at period 𝑡 maximizes lifetime utility:

𝑈 (𝑐) = 𝑢(𝑐𝑡 ) + 𝛽
∞∑︁
𝑘=1

𝛿𝑘𝑢(𝑐𝑡+𝑘 )

• Read Andreoni and Sprenger (2012 AER), Augenblick et al. (2015 QJE),
and Casaburi and Macchiavello (2019 AER) if you are interested, but not
necessary for this assignment.
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Experiment & Data Generating Process
• A researcher conducts a lab experiment in India for obtaining time

preference parameters.
• Subjects are asked to choose two-period intertemporal allocations of

money (Rs. 4000) within a convex budget set, with various 𝑡 (earlier
date), 𝑘 (time interval between th earlier and later dates), and several
interest rates 𝑃 = (1 + 𝑟).

• Assume that the subjects solve:

𝑈 (𝑐𝑡 , 𝑐𝑡+𝑘 ) = 𝑐𝛼𝑡 + 𝛽1l𝑡=0𝛿𝑘𝑐𝛼
𝑡+𝑘

s.t. 𝑃𝑐𝑡 + 𝑐𝑡+𝑘 = 4000

• Solving this,

𝑐𝑡 =
4000(𝛽1l𝑡=0𝛿𝑘𝑃)1/(𝛼−1)

1 + 𝑃(𝛽1l𝑡=0𝛿𝑘𝑃)1/(𝛼−1)
≡ 𝑔(1l𝑡=0, 𝑘, 𝑃; 𝛽, 𝛿, 𝛼)

• Parameters: 𝛽: present biasness, 𝛿: discount factor, 𝛼: curvature
(𝐼𝐸𝑆 = 1/(1 − 𝛼)).
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Convext Time Budget (CTB) Experiment



Convext Time Budget (CTB) Experiment (cont’d)
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Assignment: Non-Linear Least Square Estimation

Aim. Validate the numerical solution to a nonlinear problem
• Distributed data: 𝑤𝑖,𝑞 ≡ {𝑐𝑖,𝑡𝑞 , 𝑐𝑖,𝑡𝑞+𝑘𝑞 , 𝑡𝑞, 𝑘𝑞, 𝑃𝑞}

(𝑖: individual, 𝑞: question)

Task. Estimate the parameters 𝜃 = (𝛽, 𝛿, 𝛼̂) by non-linear least
squares (NLLS):

min
𝛽,𝛿,𝛼

∑︁
𝑖,𝑞

[𝑐𝑖,𝑡𝑞 − 𝑔(1l𝑡𝑞=0, 𝑘𝑞, 𝑃𝑞; 𝛽, 𝛿, 𝛼)]2

• Try both derivative-based and detivative-free methods.
• Feel free to use the SciPy optimization package.

• Follow the practical advice to validate your result.
E.g.) Plot each parameter value and the objective function, fixing the
other parameter values at the estimated values.
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https://docs.scipy.org/doc/scipy/reference/optimize.html
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