
Software Engineering
for Social Scientists

Shunsuke Tsuda
ECON 2020 Computing for Economists (Spring 2023)

Last updated: November, 2024

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Principles of a Productive Research Practice
Make the most of your computer by writing better code and
organizing data effectively:

1 Portability: Code should run on any machine without any
modification.

2 Clarity & Maintainability: Write code that is easy, direct,
and straightforward to understand, maintain, and develop
further at any time

3 Accuracy: Ensure programs execute as intended. Design them
to easily identify and prevent unintended behavior.

4 Efficiency: Design algorithms that conserve computing
resource usage and save computing time.

5 Reproducibility: Automate the entire research process and
ensure every research stage can be reproduced.

2 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Techniques Covered

1 Portability: Directories, Symbolic Links

2 Clarity & Maintainability:
Task management, Documentation, Abstraction

3 Accuracy: Debugging, Unit testing, Logging

4 Efficiency: Vectorization, Parallelization, HPC

5 Reproducibility: Automation, Version control

Remarks.
• These concepts are language-agnostic.
• I am not a computer expert and these slides may not be comprehensive.

Based on them, please always try to pursue your best practices.
• You may not have to follow all. Evaluate potential trade-offs such as:

• Code quality vs. Development time & Frequency of use
• Running speed vs. Difficulty of checking accuracy/robustness

3 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Techniques Covered

1 Portability: Directories, Symbolic Links

2 Clarity & Maintainability:
Task management, Documentation, Abstraction

3 Accuracy: Debugging, Unit testing, Logging

4 Efficiency: Vectorization, Parallelization, HPC

5 Reproducibility: Automation, Version control
Remarks.

• These concepts are language-agnostic.
• I am not a computer expert and these slides may not be comprehensive.

Based on them, please always try to pursue your best practices.
• You may not have to follow all. Evaluate potential trade-offs such as:

• Code quality vs. Development time & Frequency of use
• Running speed vs. Difficulty of checking accuracy/robustness

4 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

References

• As the prerequisite assignment, you have read:
Gentzkow, Matthew and Jesse M. Shapiro. 2014. “Code and
Data for the Social Sciences: A Practitioner’s Guide.”
(link “GS2014” henceforth)

• The following notes are also valuable:

Lecture notes by Fernández-Villaverde

“Coding for Economists” by Ljubica Ristovska

Note by Benjamin Skrainka

• I deeply thank Jesse Shapiro, Matt Turner, Bo Yeon Jang,
Kohei Kawaguchi, and Masahiro Kubo for their inputs.

5 / 117

https://scholar.harvard.edu/files/shapiro/files/codeanddata.pdf
https://www.sas.upenn.edu/~jesusfv/teaching.html
https://scholar.harvard.edu/files/ristovska/files/coding_for_econs_20190221.pdf
http://ice.uchicago.edu/2012_presentations/Faculty/Skrainka/ShortSoftwareEngineering.pdf

E.g.) A Regular Life of an Empirical Economist:
Data Construction for Analysis From Raw Data

Event-Level Data of Conflicts (raw data)
id side a side a id side b side b id type of violence event date

0 1 Gov. of Somalia 95 Al-Shabaab 717 1 20080510
1 2 Gov. of Mali 72 AQIM 539 1 20150705
· · · · · · · ·

11 12 Al-Shabaab 717 Hizbul Islam 1004 2 20091001
12 13 AQIM 539 CMA 1158 2 20160313
· · · · · · · ·

76 77 Al-Shabaab 717 Civilians 1 3 20091025
77 78 Boko Haram 1051 Civilians 1 3 20140710
· · · · · · · ·

Source: Uppsala Conflict Data Program – Georeferenced Event Dataset (UCDP-GED)

⇓
Non-State Group-Level Data of Conflicts (data for analysis)

id group name group id opponent name opponent id type of violence event date
0 1 Al-Shabaab 717 Gov. of Somalia 95 1 20080510
1 2 AQIM 539 Gov. of Mali 72 1 20150705
· · · · · · · ·

11 12 Al-Shabaab 717 Hizbul Islam 1004 2 20091001
12 13 AQIM 539 CMA 1158 2 20160313
13 12 Hizbul Islam 1004 Al-Shabaab 717 2 20091001
14 13 CMA 1158 AQIM 539 2 20160313
· · · · · · · ·

78 77 Al-Shabaab 717 Civilians 1 3 20091025
79 78 Boko Haram 1051 Civilians 1 3 20140710
· · · · · · · ·

Project EthnicConflicts/codes/build/prep conflicts groups.py

This code t r a n s f o r m s event − l e v e l UCDP−GED i n t o non−s t a t e group− l e v e l data
C r e a t o r : Masah i ro Kubo (masahiro kubo@brown . edu) 20190702
Las t M o d i f i e r : Shunsuke Tsuda (shunsuke tsuda@brown . edu) 20190926
INPUT :
r a w d i r + ”UCDP\ged181 . c sv ” : UCDP−GED v e r 18 .1
OUTPUT:
” Dropbox\P r o j e c t E t h n i c C o n f l i c t s\data\p r o c e s s\g e d 1 8 1 A f r i c a g r o u p s d u p . c sv ”
impor t numpy as np
impor t pandas as pd
from pandas impor t DataFrame
P l e a s e change below i n t o your own path to d a t a s e t
d a t a d i r = r ”C:\ Use r s\ s t s u d a\Dropbox\P r o j e c t E t h n i c C o n f l i c t s\data\”

#d a t a d i r = r ”C:\ Use r s\masah\Dropbox\P r o j e c t E t h n i c C o n f l i c t s\data\”

Import UCDP raw data , which c o n t a i n s e v e n t s d u r i n g 1945−2017
ged raw = pd . r e a d c s v (d a t a d i r + ” raw\UCDP\ged181 . c sv ” , sep=’ , ’)
Keep o n l y e v e n t s which take p l e a c e i n A f r i c a (” keep i f ” & ” rename ” i n STATA)
g e d A f r i c a = ged raw [ged raw . r e g i o n==’ A f r i c a ’]

C o n s t r u c t the d u p l i c a t e s i d e n t i f i e r s ,
e s p e c i a l l y f o r the type2 e v e n t s (Rebe l vs Rebe l)
g e d A f r i c a [’ d u p l i c a t e i d ’]=1

Subset o f the data wi th Non−S t a t e Rebe l vs Non−S t a t e Rebe l
temp type2 = g e d A f r i c a [g e d A f r i c a . t y p e o f v i o l e n c e ==2]
temp type2 [’ d u p l i c a t e i d ’]=2
C o n s t r u c t the group− l e v e l data by ” append ” ,
a l l o w i n g the d u p l i c a t i o n o f Non−S t a t e Rebe l g roups
g e d A f r i c a g r o u p s = pd . concat ([g e d A f r i c a , temp type2])

Reset the i n d e x a f t e r the append (Impor tant p r o c e s s i n PYTHON)
g e d A f r i c a g r o u p s . r e s e t i n d e x (drop=True , i n p l a c e=True)

Check the d u p l i c a t e d i n d e x (Check i f i t ’ s z e r o !)
g e d A f r i c a g r o u p s [g e d A f r i c a g r o u p s . i n d e x . d u p l i c a t e d ()]

(cont’d) Project EthnicConflicts/codes/build/prep conflicts groups.py

Genera te un ique i d e n t i f i e r s : ” g r o u p i d ” & ” o p p o n e n t i d ”
IMPORTANT: t h e s e i d s a r e used through the a n a l y s e s .
I f C o n f l i c t Type = Gov vs Group (Type=1)
cdn type1 = g e d A f r i c a g r o u p s . t y p e o f v i o l e n c e==1
g e d A f r i c a g r o u p s . l o c [cdn type1 , ’ g r o u p i d ’] = g e d A f r i c a g r o u p s . s i d e b i d
g e d A f r i c a g r o u p s . l o c [cdn type1 , ’ o p p o n e n t i d ’] = g e d A f r i c a g r o u p s . s i d e a i d
g e d A f r i c a g r o u p s . l o c [cdn type1 , ’ group name ’] = g e d A f r i c a g r o u p s . s i d e b
g e d A f r i c a g r o u p s . l o c [cdn type1 , ’ opponent name ’] = g e d A f r i c a g r o u p s . s i d e a

I f C o n f l i c t Type = One−S ided V i o l e n c e a g a i n s t C i v i l i a n s (Type=3)
cdn type3 = g e d A f r i c a g r o u p s . t y p e o f v i o l e n c e==3
g e d A f r i c a g r o u p s . l o c [cdn type3 , ’ g r o u p i d ’] = g e d A f r i c a g r o u p s . s i d e a i d
g e d A f r i c a g r o u p s . l o c [cdn type3 , ’ o p p o n e n t i d ’] = g e d A f r i c a g r o u p s . s i d e b i d
g e d A f r i c a g r o u p s . l o c [cdn type3 , ’ group name ’] = g e d A f r i c a g r o u p s . s i d e a
g e d A f r i c a g r o u p s . l o c [cdn type3 , ’ opponent name ’] = g e d A f r i c a g r o u p s . s i d e b

I f C o n f l i c t Type = Group vs Group (Type=2)
c d n t y p e 2 1 =(g e d A f r i c a g r o u p s . t y p e o f v i o l e n c e ==2)&(g e d A f r i c a g r o u p s . d u p l i c a t e i d ==1)
g e d A f r i c a g r o u p s . l o c [cdn type2 1 , ’ g r o u p i d ’] = g e d A f r i c a g r o u p s . s i d e a i d
g e d A f r i c a g r o u p s . l o c [cdn type2 1 , ’ o p p o n e n t i d ’] = g e d A f r i c a g r o u p s . s i d e b i d
g e d A f r i c a g r o u p s . l o c [cdn type2 1 , ’ group name ’] = g e d A f r i c a g r o u p s . s i d e a
g e d A f r i c a g r o u p s . l o c [cdn type2 1 , ’ opponent name ’] = g e d A f r i c a g r o u p s . s i d e b
c d n t y p e 2 2 =(g e d A f r i c a g r o u p s . t y p e o f v i o l e n c e ==2)&(g e d A f r i c a g r o u p s . d u p l i c a t e i d ==2)
g e d A f r i c a g r o u p s . l o c [cdn type2 2 , ’ g r o u p i d ’] = g e d A f r i c a g r o u p s . s i d e b i d
g e d A f r i c a g r o u p s . l o c [cdn type2 2 , ’ o p p o n e n t i d ’] = g e d A f r i c a g r o u p s . s i d e a i d
g e d A f r i c a g r o u p s . l o c [cdn type2 2 , ’ group name ’] = g e d A f r i c a g r o u p s . s i d e b
g e d A f r i c a g r o u p s . l o c [cdn type2 2 , ’ opponent name ’] = g e d A f r i c a g r o u p s . s i d e a

Export the f i n a l output
g e d A f r i c a g r o u p s . t o c s v (d a t a d i r + ” p r o c e s s / g e d 1 8 1 A f r i c a g r o u p s d u p . c sv ”)

p r i n t (’ C o n s t r u c t UCDP−GED e v e n t s by g id , a l l o w i n g d u p l i c a t e d ones , done ’)

Portability

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Portability

• Code and data must be migrated to other machines in various
situations:
Buy a new computer; In a more powerful server at university;
Collaborators’ computers; A journal editor’s laptop, etc...

• Be portable: Code should work in any machines without any
changes.

Techniques for improving portability:

1 Fix rules for directory structure and be consistent with it
throughout a project and among collaborators.

2 Write code that does not depend on a machine-specific
path.

10 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

E.g.) Directories for the Ethnic Conflict Project

Paper production steps:

/data/raw
: All raw data used for this research

(→ /data/process; /data/process GIS
: Some intermediate data)

→ /data/for analysis
: The final data used for statistical analyses

→ /outputs
: Figures & Tables generated by statistical analyses

11 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

E.g.) Directories for the Ethnic Conflict Project

/codes/build
: Code for building the data for analyses from raw data

• Inputs: /data/raw

• Outputs: /data/for analysis

/codes/analysis
: Code for generating final outputs by analyses

• Inputs: /data/for analysis

• Outputs: /outputs

12 / 117

E.g.) Directories for a Larger Scale Project
/code/clean

• Inputs: /data/raw
• Outputs: /data/raw cleaned

/code/build slow
• Inputs: /data/raw cleaned
• Outputs: /data/process

/code/build fast
• Inputs: /data/raw cleaned & /data/process
• Outputs: /data/for analysis

/code/analysis descriptive
• Inputs: /data/for analysis
• Outputs: /drafts outputs

/code/analysis reducedform:
• Inputs: /data/for analysis
• Outputs: /drafts outputs

/code/analysis structural:
• Inputs: /data/for analysis
• Outputs: /drafts outputs & /data/for counterfactual

/code/analysis counterfactual:
• Inputs: /data/for analysis & /data/for counterfactual
• Outputs: /drafts outputs

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Directories

• No need to follow the above example precisely.

• No unique golden structure exists:
• Different researchers employ somewhat different directory

structures.
E.g.) GS2014 proposes a different structure from mine.

• Optimal directory structures might differ across different
research projects.

But, just follow the key principles:

1 Separate directories by functions and by steps in a
research project

2 Separate files into inputs and outputs of each step

14 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

E.g.) Our Code was NOT Portable
Project EthnicConflicts/codes/build/prep conflicts groups.py

This code t r a n s f o r m s event − l e v e l UCDP−GED i n t o non−s t a t e group− l e v e l data
impor t numpy as np
impor t pandas as pd
from pandas impor t DataFrame
P l e a s e change below i n t o your own path to d a t a s e t s
d a t a d i r = r ”C:\ Use r s\ s t s u d a\Dropbox\P r o j e c t E t h n i c C o n f l i c t s\data\”

#d a t a d i r = r ”C:\ Use r s\masah\Dropbox\P r o j e c t E t h n i c C o n f l i c t s\data\”
Import UCDP raw data , which c o n t a i n s e v e n t s d u r i n g 1945−2017
ged raw = pd . r e a d c s v (d a t a d i r + ” raw\UCDP\ged181 . c sv ” , sep=’ , ’)
...

• I am working on a joint project with Masa.

• Our (absolute) paths to the data are different.

• The person who edits and runs this code adjusts the above
path each time.

• NO!

15 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Use a RELATIVE Path for Portability
Project EthnicConflicts/codes/build/prep conflicts groups.py

This code t r a n s f o r m s event − l e v e l UCDP−GED i n t o non−s t a t e group− l e v e l data
impor t numpy as np
impor t pandas as pd
from pandas impor t DataFrame
d a t a d i r = r ” . . \ . . \ data\” # RELATIVE path to d a t a s e t s

Import UCDP raw data , which c o n t a i n s e v e n t s d u r i n g 1945−2017
ged raw = pd . r e a d c s v (d a t a d i r + ” raw\UCDP\ged181 . c sv ” , sep=’ , ’)
...

• With the above relative path, any computer can
run the code without any changes in the code, as
long as the directory structure is fixed.

• Of course, start writing relative paths for the first
time after ensuring the internal consistency of
directory structure among collaborators.

16 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

What if the Project Scale Enlarges Further?
• Raw datasets tend to be heavy in a large scale projcet.
• Some researchers do not want to put them in a main directory which

affects machine storage (DropBox, C drive, etc)
• Fine to put them outside (e.g., external hard drive)
• That is also why it is important to separate directories by function:

• Easy to move only the raw datasets to another place
• Once in the analysis step, no more frequent use of raw datasets

17 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

What if the Project Scale Enlarges Further?
d a t a d i r = r ” . . \ . . \ data\” # RELATIVE path to p r o c e s s e d d a t a s e t s

#Set the path to the raw data f o r each r e s e a r c h e r
impor t g e t p a s s
i f g e t p a s s . g e t u s e r () == ” s t s u d a ” :

r a w d i r = ”Y: / D a t a E t h n i c C o n f l i c t s /”
e l i f g e t p a s s . g e t u s e r () == ”masah” :

r a w d i r = ”C: / Use r s /masah/Dropbox/ D a t a E t h n i c C o n f l i c t s /”

Import UCDP raw data
ged raw = pd . r e a d c s v (r a w d i r + ”UCDP/ ged181 . c sv ” , sep=’ , ’)

...
Export the f i n a l output
g e d A f r i c a g r o u p s . t o c s v (d a t a d i r + ” p r o c e s s / g e d 1 8 1 A f r i c a g r o u p s d u p . c sv ”)

• In this case, since some collaborators store raw datasets
outside, should we rely on absolute paths for calling raw data?

• NO! ⇒ Use symbolic links to still keep the main code NOT
dependent on machine

18 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Symbolic Links
• Symbolic links: Shortcuts to a folder
• Python module: os.symlink

You can also set symbolic links by Command Prompt (Windows) or
Terminal (Mac), but I find this Python module more maintainable.

• Run the below code just once at the beginning of the project,
and use relative paths in the main code even if different
researchers put their actual raw data in different locations

impor t os , g e t p a s s
Crea te a ” s h o r t c u t ” to an e x t e r n a l raw data f o l d e r he r e a c c e s s i b l e by a r e l a t i v e path
i n p u t = ” . . / data / raw ”

i f g e t p a s s . g e t u s e r () == ” s t s u d a ” :
e x t e r n a l r a w = ”Y: / D a t a E t h n i c C o n f l i c t s /”

e l i f g e t p a s s . g e t u s e r () == ”masah” :
e x t e r n a l r a w = ”C: / Use r s /masah/Dropbox/ D a t a E t h n i c C o n f l i c t s /”

d e f s y m l i n k f o r c e (e x t e r n a l , l i n k n am e) :
t r y :

os . s y m l i n k (e x t e r n a l , l i n k n am e)
e x c e p t F i l e E x i s t s E r r o r :

os . remove (l i n k n am e)
os . s y m l i n k (e x t e r n a l , l i n k n am e)

s y m l i n k f o r c e (e x t e r n a l r a w , i n p u t) 19 / 117

https://docs.python.org/3.7/library/os.html

Clarity & Maintainability

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Clarity & Maintainability
Plan ahead for maintenance and future extensions:
(e.g., R&R, Extension of an existing paper for a new project, Share the code
with another researcher for his/her project)

• All collaborators should easily understand tasks and follow
discussions in the entire research process

• All collaborators should understand your code quickly and
straightforwardly without asking any questions and without
opening any other documents

• Have no confusions when coming back to your code, data, and
discussions after years

Techniques for improving clarity & maitainability:
1 Task management system
2 Abstraction
3 Self- & minimally-documented code

21 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Management of Research Projects
• Do NOT have discussions on your research project that you

want to maintain by e-mail
• It is hard to to track past discussions by emails
• It also takes time to copy and paste discussions by emails into a

memo word file, and its maintainance cost is high
• Rather, manage tasks and accumulate discussions by a task

management system
• It also helps a solo research project to accumulate decisions,

thoughts, and records
• Some free task management systems:

• Trello
• GitHub Project
• ActiveCollab
• Asana
• Slack (?) 22 / 117

https://trello.com/
https://github.com/features/project-management/
https://activecollab.com/
https://asana.com/premium?&gclid=CjwKCAjwqdn1BRBREiwAEbZcR3j1ct0unRrAcGJSQF2nGYbPHMZOmaJrKpxSTt28j4nAbjWe8OzWjxoCh7YQAvD_BwE
https://slack.com/

E.g.) Task Management System (Trello)

E.g.) Task Management System (Trello)

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Abstraction

• Oftentimes, we write similar code by copying and pasting...

• Abstraction of code by a general-form funcion helps to:
• Simplify and shorten code
• Reduce mistakes
• Reuse for different purposes with minimum amount of

revisions

• More generally, design your code such that you can modify only
one visible place in your code when you should modify
something in your research process.

• Recall the trade-off between code development time and code
quality — Be patient and think dynamically!

25 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Code Example
An example in Chapter 6 of GS2014 transformed to Python:
impor t pandas as pd

State − l e v e l a g g r e g a t i o n
d f [’ t o t a l p c p o t a t o ’] = df . groupby (’ s t a t e ’) [’ p c p o t a t o ’] . t r a n s f o r m (’ sum ’)
d f [’ t o t a l o b s ’] = df . groupby (’ s t a t e ’) [’ p c p o t a t o ’] . t r a n s f o r m (’ count ’)
d f [’ l e a v e o u t s t a t e p c p o t a t o ’] \\
= (df [’ t o t a l p c p o t a t o ’] − d f [’ p c p o t a t o ’]) / (d f [’ t o t a l o b s ’] − 1)

Metroarea− l e v e l a g g r e g a t i o n
d f [’ t o t a l p c p o t a t o ’] = df . groupby (’ met roa rea ’) [’ p c p o t a t o ’] . t r a n s f o r m (’ sum ’)
d f [’ t o t a l o b s ’] = df . groupby (’ s t a t e ’) [’ p c p o t a t o ’] . t r a n s f o r m (’ count ’)
d f [’ l e a v e o u t m e t r o p c p o t a t o ’] \\
= (df [’ t o t a l p c p o t a t o ’] − d f [’ p c p o t a t o ’]) / (d f [’ t o t a l o b s ’] − 1)

What i f we have to r e p e a t t h i s more at d i f f e r e n t l e v e l s ?

26 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Code Example: Abstraction

d e f l eaveout mean (d , i n v a r , byva r) :
’ ’ ’
Th i s f u n c t i o n r e t u r n s ” l e a v e −out ” mean o f ’ i n v a r ’ f o r each group ’ byva r ’ .
’ ’ ’

i f name == ’ m a i n ’ :

#Sum ’ i n v a r ’ by group ’ byva r ’
d [’ t o t i n v a r ’] = d . groupby (byva r) [i n v a r] . t r a n s f o r m (’ sum ’)

#Count t o t a l o b s e r v a t i o n s by group ’ byva r ’
d [’ c o u n t i n v a r ’] = d . groupby (byva r) [i n v a r] . t r a n s f o r m (’ count ’)

’ ’ l e a v e −out ’ ’ mean o f ’ i n v a r ’ f o r each group ’ byva r ’
d [’ o u t v a r ’] = (d [’ t o t i n v a r ’] − d [i n v a r]) / (d [’ c o u n t i n v a r ’] − 1)
r e t u r n d [’ o u t v a r ’]

With t h i s documentat ions by ””” ””” ,
h e l p (func) can r e t u r n the documentat ions o f the f u n c t i o n .
h e l p (l eaveout mean)

State − l e v e l a g g r e g a t i o n
l eaveout mean (d = df , i n v a r = ’ p c p o t a t o ’ , byva r = ’ s t a t e ’)

Metroarea− l e v e l a g g r e g a t i o n
l eaveout mean (d = df , i n v a r = ’ p c p o t a t o ’ , byva r = ’ met roarea ’)

27 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Code as Documentation
Code should be self-documenting and document minimally to convey
necessary information:

• Naming of files, variables, functions, logical conditions, and
error-checkings indicate their meanings straightforwardly

• Keep only documentation that you must maintain by construction of your
code, i.e., revising your code should automatically revise your
documentation as well

Do NOT write about the same information at multiple locations:
(which entails a risk of having internal inconsistency by forgetting to revise at one location
while revising another when the information is updated...)

• Abstraction
• Reduce comment sentences and external “memo” files

That being said, there are also necessary comment sentences:
• Key decisions and choices made, and why you made them
• Time-invariant things: e.g. formulas, descriptions of built-in

packages/commands (if their names are not straightforward)
• Citations and links 28 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Coding Rules as Clear Documentation
• Be consistent within a script, among collaborators, and within a project
• The file name of the code indicates what this code is doing (rather than

commenting on a top line inside the code script)
• Import necessary packages on top
• Define inputs and outputs of the code on top (with descriptive names of

data files ⇒ no need of comment sentenses for describing data sources)
• Define parameters and variables on top (with descritive names)
• Write a main function (a main program in Stata) which describes the

entire structure and flow (with descriptive names of inside functions)
• Order functions linearly. Make sub-functions appear immediately after the

higher level functions that call them.
• If you have to inevitably write comment sentences, make them not

dispersed but concentrated in a clearly visible location

29 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

E.g.) Code as Documentation (in STATA)

30 / 117

Recall: Programming Paradigms
Procedural: The program moves through instructions linearly

• Simple to write and easy to do line-by-line trial and error

Functional: The program moves from function to function
• Separating tasks into sub-functions make the code readable, scannable,

and maintainable

• By looking at the “main” function, easy to understand the entire
strucuture of the program

• Easy to run a subset of the entire program

Object Oriented Programming (OOP): a programming paradigm
which provides a means of structuring programs so that data and its
behaviors are bundled into an individual object (see the previous
slides in more detail)

Exercise 1

Recall the Ethnic Conflict Project:
Data Construction for Analysis From Raw Data

Event-Level Data of Conflicts (raw data)
id side a side a id side b side b id type of violence event date

0 1 Gov. of Somalia 95 Al-Shabaab 717 1 20080510
1 2 Gov. of Mali 72 AQIM 539 1 20150705
· · · · · · · ·

11 12 Al-Shabaab 717 Hizbul Islam 1004 2 20091001
12 13 AQIM 539 CMA 1158 2 20160313
· · · · · · · ·

76 77 Al-Shabaab 717 Civilians 1 3 20091025
77 78 Boko Haram 1051 Civilians 1 3 20140710
· · · · · · · ·

Source: Uppsala Conflict Data Program – Georeferenced Event Dataset (UCDP-GED)

⇓
Non-State Group-Level Data of Conflicts (data for analysis)

id group name group id opponent name opponent id type of violence event date
0 1 Al-Shabaab 717 Gov. of Somalia 95 1 20080510
1 2 AQIM 539 Gov. of Mali 72 1 20150705
· · · · · · · ·

11 12 Al-Shabaab 717 Hizbul Islam 1004 2 20091001
12 13 AQIM 539 CMA 1158 2 20160313
13 12 Hizbul Islam 1004 Al-Shabaab 717 2 20091001
14 13 CMA 1158 AQIM 539 2 20160313
· · · · · · · ·

78 77 Al-Shabaab 717 Civilians 1 3 20091025
79 78 Boko Haram 1051 Civilians 1 3 20140710
· · · · · · · ·

EC2020/class materials/prep conflicts groups bad.py

This code t r a n s f o r m s event − l e v e l UCDP−GED i n t o non−s t a t e group− l e v e l data
INPUT :
r a w d i r + ”UCDP\ged181 . c sv ” : UCDP−GED v e r 18 .1
OUTPUT:
” Dropbox\EC2020\data\g e d 1 8 1 A f r i c a g r o u p s d u p . c sv ”
impor t pandas as pd
from pandas impor t DataFrame
d a t a d i r = r ” . .\ data\” # RELATIVE path to d a t a s e t s ”

Import UCDP raw data , which c o n t a i n s e v e n t s d u r i n g 1945−2017
ged raw = pd . r e a d c s v (d a t a d i r + ” ged181 . c sv ” , sep=’ , ’)
Keep o n l y e v e n t s which take p l e a c e i n A f r i c a (” keep i f ” & ” rename ” i n STATA)
g e d A f r i c a = ged raw [ged raw . r e g i o n==’ A f r i c a ’]

C o n s t r u c t the d u p l i c a t e s i d e n t i f i e r s ,
e s p e c i a l l y f o r the type2 e v e n t s (Rebe l vs Rebe l)
g e d A f r i c a [’ d u p l i c a t e i d ’]=1

Subset o f the data wi th Non−S t a t e Rebe l vs Non−S t a t e Rebe l
temp type2 = g e d A f r i c a [g e d A f r i c a . t y p e o f v i o l e n c e ==2]
temp type2 [’ d u p l i c a t e i d ’]=2

C o n s t r u c t the group− l e v e l data by ” append ” ,
a l l o w i n g the d u p l i c a t i o n o f Non−S t a t e Rebe l g roups
g e d A f r i c a g r o u p s = pd . concat ([g e d A f r i c a , temp type2])

Reset the i n d e x a f t e r the append (Impor tant p r o c e s s i n PYTHON)
g e d A f r i c a g r o u p s . r e s e t i n d e x (drop=True , i n p l a c e=True)

Check the d u p l i c a t e d i n d e x (Check i f i t ’ s z e r o !)
g e d A f r i c a g r o u p s [g e d A f r i c a g r o u p s . i n d e x . d u p l i c a t e d ()]

(cont’d) EC2020/class materials/prep conflicts groups bad.py

Genera te un ique i d e n t i f i e r s : ” g r o u p i d ” & ” o p p o n e n t i d ”
IMPORTANT: t h e s e i d s a r e used through the a n a l y s e s .
I f C o n f l i c t Type = Gov vs Group (Type=1)
cdn type1 = g e d A f r i c a g r o u p s . t y p e o f v i o l e n c e==1
g e d A f r i c a g r o u p s . l o c [cdn type1 , ’ g r o u p i d ’] = g e d A f r i c a g r o u p s . s i d e b i d
g e d A f r i c a g r o u p s . l o c [cdn type1 , ’ o p p o n e n t i d ’] = g e d A f r i c a g r o u p s . s i d e a i d
g e d A f r i c a g r o u p s . l o c [cdn type1 , ’ group name ’] = g e d A f r i c a g r o u p s . s i d e b
g e d A f r i c a g r o u p s . l o c [cdn type1 , ’ opponent name ’] = g e d A f r i c a g r o u p s . s i d e a

I f C o n f l i c t Type = One−S ided V i o l e n c e a g a i n s t C i v i l i a n s (Type=3)
cdn type3 = g e d A f r i c a g r o u p s . t y p e o f v i o l e n c e==3
g e d A f r i c a g r o u p s . l o c [cdn type3 , ’ g r o u p i d ’] = g e d A f r i c a g r o u p s . s i d e a i d
g e d A f r i c a g r o u p s . l o c [cdn type3 , ’ o p p o n e n t i d ’] = g e d A f r i c a g r o u p s . s i d e b i d
g e d A f r i c a g r o u p s . l o c [cdn type3 , ’ group name ’] = g e d A f r i c a g r o u p s . s i d e a
g e d A f r i c a g r o u p s . l o c [cdn type3 , ’ opponent name ’] = g e d A f r i c a g r o u p s . s i d e b

I f C o n f l i c t Type = Group vs Group (Type=2)
c d n t y p e 2 1 =(g e d A f r i c a g r o u p s . t y p e o f v i o l e n c e ==2)&(g e d A f r i c a g r o u p s . d u p l i c a t e i d ==1)
g e d A f r i c a g r o u p s . l o c [cdn type2 1 , ’ g r o u p i d ’] = g e d A f r i c a g r o u p s . s i d e a i d
g e d A f r i c a g r o u p s . l o c [cdn type2 1 , ’ o p p o n e n t i d ’] = g e d A f r i c a g r o u p s . s i d e b i d
g e d A f r i c a g r o u p s . l o c [cdn type2 1 , ’ group name ’] = g e d A f r i c a g r o u p s . s i d e a
g e d A f r i c a g r o u p s . l o c [cdn type2 1 , ’ opponent name ’] = g e d A f r i c a g r o u p s . s i d e b
c d n t y p e 2 2 =(g e d A f r i c a g r o u p s . t y p e o f v i o l e n c e ==2)&(g e d A f r i c a g r o u p s . d u p l i c a t e i d ==2)
g e d A f r i c a g r o u p s . l o c [cdn type2 2 , ’ g r o u p i d ’] = g e d A f r i c a g r o u p s . s i d e b i d
g e d A f r i c a g r o u p s . l o c [cdn type2 2 , ’ o p p o n e n t i d ’] = g e d A f r i c a g r o u p s . s i d e a i d
g e d A f r i c a g r o u p s . l o c [cdn type2 2 , ’ group name ’] = g e d A f r i c a g r o u p s . s i d e b
g e d A f r i c a g r o u p s . l o c [cdn type2 2 , ’ opponent name ’] = g e d A f r i c a g r o u p s . s i d e a

Export the f i n a l output
g e d A f r i c a g r o u p s . t o c s v (d a t a d i r + ” g e d 1 8 1 A f r i c a g r o u p s d u p . c sv ”)

p r i n t (’ C o n s t r u c t UCDP−GED e v e n t s by g id , a l l o w i n g d u p l i c a t e d ones , done ’)

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Exercise: Code Cleanup

• Notice that the portability is improved in the above code (the
same as the distributed code).

Task. Clean up the above code further. Especially care about the
principles of clarity & maintainability.

Hint. You can edit anything in the code (including file name, variable
name, etc)

Hint. Any scope for abstraction?

Hint. There are many detailed explanations in the code. Very
generous! But, are they really beneficial?

Hint. Conflict event datasets are updated annually by UCDP.
Researchers always want to use up-to-date information.

36 / 117

Accuracy

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Accuracy: Correctness / Robustness / Verifiability
Imagine the mindset of airplane maintenance

• Avoid coding errors and if any, find them fast

• Be sure that code runs as researchers intended (even if
the code does not return “errors”)

• Test often and modularly

Techniques for improving accuracy:

1 Debugging

2 “Try” & “Except” block

3 Unit testing

4 Logging
38 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Debugging

• Debugging: finding problems/errors in your code and fixing
them.

• Not good to make random changes to your code in order to
find and fix errors.

• Debugging is more valuable for a larger program, since it is
harder to find a problem when you have many loops and your
own (user-defined) functions.

Remark. Debugging tools vary across platforms, IDEs and editors. Here, we focus on Spyder.

39 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Debugging Example 1
The below code attempts to guess head or tail twice to obtain ”Correct!” in
the end. However, it contains a mistake.
Example : gue s s e i t h e r head or t a i l
I n : from random impor t r a n d i n t
. . . : gue s s = ’ ’
. . . : w h i l e gue s s not i n (’ head ’ , ’ t a i l ’) :
. . . : p r i n t (’ Which i s your guess , head , o r t a i l : ’)
. . . : gue s s = i n p u t ()
. . . : t o s s = r a n d i n t (0 , 1) # 0 = t a i l & 1 = head
. . . : i f t o s s == gues s :
. . . : p r i n t (’ C o r r e c t ! ’)
. . . : e l s e :
. . . : p r i n t (’ P l e a s e gue s s aga in ’)
. . . : gue s s = i n p u t ()
. . . : i f t o s s == gues s :
. . . : p r i n t (’ C o r r e c t ! ’)
. . . : e l s e :
. . . : p r i n t (’Hmmm’)
Which i s your guess , head , o r t a i l :

head

P l e a s e gue s s aga in

t a i l
Hmmm

Something wrong happened even though we can run code successfully. What is
the issue? Let’s debug the code. 40 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

How to Debug
First, click “Debug” in the red-lined frame.

41 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

(Cont’d) How to Debug
Your IPython console should look like below. We are in debugging
mode now.

42 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

(Cont’d) How to Debug
Type n in IPython console or click “Step” to move to a next line.
The rightwards dotted arrow indicates that we are in the second line.

43 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

(Cont’d) How to Debug
Once we reach here, let’s type head. You can find the variable
guess, whose value is head in the variable explorer.

44 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

(Cont’d) How to Debug
Move to the line “toss=randint(0,1)”. Here is the problem: The variables
“guess” and “toss” are different types from each other, therefore, the condition
“toss == guess” returns false.

Let’s end the debugging mode by either:
1 Type c (or click Continue) to run your whole code in debugging mode

and end the debugging mode, or
2 Type q (or click Stop) to get you out of debugging mode immediately.

45 / 117

Other options
• “s” command (or click Step Intro): look into function code

• “r” command (or click Step Return): skip to the end of the
function. This is similar with “continue”, but this runs to the
only end of the function.

• “l” command: tell where you are in your whole script.

• “j <line number>” command: jump to the specified line.

• In debugging mode, if you type help in IPython console, you
could know other options. Type help 〈command〉 to know
what each command means.

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Debugging Example 2
In : import numpy as np
...: import statistics
...:
...: a = statistics . median ([1 , 2, 3, np.nan])
...: a
Out: 2.5 # This should be 2!

• The researcher expected to obtain an interger as the median...
• Let’s debug the code again. It seems we should look into what

the function statistics.median looks like.
• Let’s step to the line of implementing the median function

(using j <number> & n commands).

47 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Debugging Example 2
• Type s (or click “Step Into”) at this line, so that the file

statistics.py which contains the median function shows up. (IPython
console also starts debugging the function.)

• The median function recognizes nan as one number and returns a weird
result. We found the issue here, so close the debugging mode.

48 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Breakpoint

• It may take a lot of time to reach to where you want to debug
if you debug line by line.

• Breakpoint would be helpful for you to reach where you want
to debug.

Suppose that we want to know how many times we have heads at the half (at
the end of the 500th trial in this example). However, if you debug line by line, it
takes a lot of time to reach the 500th trial when we have a loop.
One thousand t imes o f c o i n f l i p s .
impor t random
heads = 0
f o r i i n range (1 , 1 0 0 1) :

i f random . r a n d i n t (0 , 1) == 1 :
heads = heads + 1

i f i == 500 :
p r i n t (’ h a l f completed ! ’)

p r i n t (’How many t imes we have heads :{0} ’ . fo rmat (heads))

49 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

(Cont’d) Breakpoint
Let’s set a breakpoint in the 7th line by double-clicking on the point
where we have the red point or by clicking “Set/Clear breakpoint”
after highlighting the 7th line. Select “Debug”.

50 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

(Cont’d) Breakpoint
After starting debugging, we immediately jump to “i == 500”. As
you can see, in the variable explorer, we have an outcome in the end
of the 500th trial. (FYI: Explore also the conditional breakpoint method.)

51 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Handling Exceptions
import numpy as np
numlist1 = np. random . randint (0, 10, size =[10 , 1])

for i in range (0, len(numlist1) + 1):
print (numlist1 [i])

IndexError : index 10 is out of bounds for axis 0 with size 10

Once we get errors, Python stops running the code...

⇓
• The “try” and “except” block is used to catch and handle

exceptions.

• This is a similar block with “capture” and the following
“if/else” block in Stata.

52 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Code Example: “try” and “except”
impor t pandas as pd

Crea te data frame
Rwanda income = pd . DataFrame ({” y e a r ” : [1 , 2 , 3] , ” income ” : [1 0 0 , 200 , 300]})
Tanzan ia income = pd . DataFrame ({” y e a r ” : [1 , 2] , ” income ” : [2 0 0 , 300]})
Uganda income = pd . DataFrame ({” y e a r ” : [1 , 2 , 3 , 4] , ” income ” : [3 0 0 , 200 , 300 , 400]})

Genera te ” co u n t r y ” column
Rwanda income [’ c o u n t r y ’] = ”Rwanda”
Tanzan ia income [’ co u n t r y ’] = ” Tanzania ”
Uganda income [’ c ou n t r y ’] = ”Uganda”

Suppose a r e s e a r c h e r r e c o g n i z e s t h a t the data c o v e r s 4 y e a r s
p a n e l l e n g t h = 4

Crea te ” new id ” by data f rame
Get e r r o r !
f o r d f i n [Rwanda income , Tanzania income , Uganda income] :

d f [” new id ”] = ””
f o r x i n range (p a n e l l e n g t h) :

d f . l o c [x , ” new id ”] = df [” co u n t r y ”] [0] + s t r (d f [” y e a r ”] [x])

I n s t e a d , t h i s way can work
f o r d f i n [Rwanda income , Tanzania income , Uganda income] :

d f [” new id ”] = ””
f o r x i n range (p a n e l l e n g t h) :

#Hand l ing e x c e p t i o n e r r o r s because o f d i f f e r e n t s i z e s among data f r ames
t r y :

d f . l o c [x , ” new id ”] = df [” co u n t r y ”] [0] + s t r (d f [” y e a r ”] [x])
e x c e p t :

c n t r y = df [” c ou n t r y ”] [0]
p r i n t (f ”{ c n t r y} : y e a r (i n d e x) = {x} data does not e x i s t ”)

53 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Code Example: “try” and “except”
Note t h a t t h i s i s a toy example o f how to use h a n d l i n g e x c e p t i o n s .
f o r d f i n [Rwanda income , Tanzania income , Uganda income] :

d f [” new id ”] = ””
f o r x i n range (p a n e l l e n g t h) :

#Hand l ing e x c e p t i o n e r r o r s because o f d i f f e r e n t s i z e s among data f r ames
t r y :

d f . l o c [x , ” new id ”] = df [” co u n t r y ”] [0] + s t r (d f [” y e a r ”] [x])
e x c e p t :

c n t r y = df [” c ou n t r y ”] [0]
p r i n t (f ”{ c n t r y} : y e a r (i n d e x) = {x} data does not e x i s t ”)

This e r r o r can be avo ided e n t i r e l y by u s i n g the a c t u a l p a n e l l e n g t h o f each
data f rame r a t h e r than assuming i t i s 4 .
f o r d f i n [Rwanda income , Tanzania income , Uganda income] :

d f [” new id ”] = ””
f o r x i n range (l e n (d f)) :

d f . l o c [x , ” new id ”] = df [” co u n t r y ”] [0] + s t r (d f [” y e a r ”] [x])

This code can be f u r t h e r improved by g e n e r a t i n g columns w i thout l o o p i n g through rows .
f o r d f i n [Rwanda income , Tanzania income , Uganda income] :

d f [” new id ”] = df [” co u n t r y ”] + df [” y e a r ”] . a s t y p e (s t r)

Handling exceptions can be very useful in practical applications:
• You may want your numerical optimization code to keep going even if the

algorithm fails to find a result in one instance.
• In web scraping you may want to try scraping all possible URLs generated

from known patterns even if some don’t exist.
54 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Unit Test
• Writing a test in your script would take less time than testing

manually in the interpreter
• Unit test is to check if the piece of code works as you intend
• How to implement unit test (recall the OOP!):

1 Import unittest
2 Create a class that inherits unittest.TestCase
3 Within the inherited class, describe test cases using

methods .assertXXX
4 Implement the set of tests by unittest.main()

55 / 117

https://docs.python.org/3/library/unittest.html

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Unit Test Example: statistics.median

impor t u n i t t e s t
impor t numpy as np
impor t s t a t i s t i c s as s t a t s

De f i n e a c l a s s f o r u n i t t e s t
c l a s s Test (u n i t t e s t . TestCase) :

Test f o r t l i s t
d e f t e s t l i s t (s e l f) :

t l i s t = [1 , 2 , 3 , 4 , 5]
r e s u l t = s t a t s . median (t l i s t) #s t o r e the r e s u l t o f s t a t s . median
s e l f . a s s e r t T r u e (r e s u l t == 3) #t e s t i f s t a t s . median r e t u r n s 3

Test f o r t t u p l e
d e f t e s t t u p l e (s e l f) :

t t u p l e = (6 , 7 , 8 , 9 , 10)
r e s u l t = s t a t s . median (t t u p l e)
s e l f . a s s e r t T r u e (r e s u l t , i n t) #t e s t i f t h i s r e t u r n s an i n t e g e r

Test f o r N a n l i s t
d e f t e s t Nan (s e l f) :

N a n l i s t = [1 , 2 , 3 , 4 , 5 , np . nan]
r e s u l t = s t a t s . median (N a n l i s t)
s e l f . a s s e r t T r u e (i s i n s t a n c e (r e s u l t , i n t)) #t e s t i f t h i s r e t u r n s an i n t e g e r

Execute Un i t Test
i f name == ’ m a i n ’ :

u n i t t e s t . main ()

56 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

• Now you get test results similar to below.
==
FAIL: test_Nan (__main__.Test)
--
Traceback (most recent call last):

File "YourFolderPath/UnitTest.py", line 29, in test_Nan
self.assertTrue(isinstance(result, int))

AssertionError: False is not true

--

• In this example, if you forget to drop missing values and use
statistics module, you get erroneous summary statistics.

• Recall that code should be self-documenting — Instead of
adding a comment sentence like “Check that the result of
taking median is integer!”, implement this test

• It’s good to test both functions from standard modules and
your own functions.

57 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Robustness & Verifiability

• Robustness is the ability of a computer system to cope with
errors during execution.

• Your programs should run correctly or crash when meeting
unexpected circumstances.

• Crashing is much better than reporting something
unintended.

• E.g.) median{1, 2, 3, nan} = ERROR! is better than
median{1, 2, 3, nan} = 3.

• Being able to look at the output later and tell how it was
generated, as well as see if it is correct, is important.

• Log and diagnostic files are helpful for this.

58 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Logging
The print command works fine for short code like below.
import numpy as np
numlist1 = np. random . randint (0, 10, size =[10 , 1])
for i in range (0, len(numlist1) + 1):

try:
print (numlist1 [i])

except :
print (" Exception occurred ")

But, what if we have longer code and more exceptions? ⇒ Logging!
• Logging is provided as a standard library module.
• Logging records when your code runs and what it did in a produced log

file.
• Logging can set various levels of errors: debug (the lowest level), info,

warning, error, and critical (the highest level).
• See Logging facility for Python for more detail.

59 / 117

https://docs.python.org/3.8/library/logging.html#logging.LogRecord

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

How to Log
1 Create a log file.
2 Set up log format: what you want Python to write down.
3 Decide a logging level:

• Python writes down higher logging levels in a log file than the
logging level you set.

• If you set the level debug as your default, then Python writes down
all the logging levels in a log file.

4 Name your logger object.
5 Put your logger where you want Python to write down a result

in a log file.
Let’s look at the above through code example.
Spyder u s e r s need to run t h e s e t h r e e l i n e s e v e r y t ime you use the l o g g i n g module .
from i m p o r t l i b impor t r e l o a d
impor t l o g g i n g # Spyder cannot read l o g g i n g module p r o p e r l y by o n l y impor t .
r e l o a d (l o g g i n g) # T e l l Spyder to read l o g g i n g module aga in .

A l t e r n a t e l y , you can t r y add ing ’ f o r c e = True ’ to the b a s i c C o n f i g f u n c t i o n i n the example code .

Note. See this link for a bug about logging in Spyder.
60 / 117

https://github.com/spyder-ide/spyder/issues/2572

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Logging: Code Example
impor t l o g g i n g
impor t numpy as np

Log F i l e
l o g f i l e = r ’ pathTo\ l o g g e r . l o g ’ #Use r e l a t i v e path

Log Format : a s c t ime = t ime reco rd , name = l o g g e r name ,
l e v e l n a m e = l o g g i n g l e v e l f o r the message (e . g . debug) ,
l i n e n o = l i n e number i n your s c r i p t , message = the l ogged message
fmt = ’%(asc t ime) s − %(name) s − %(l e v e l n a m e) s − %(l i n e n o) s − %(message) s ’

#Set a l o g g i n g l e v e l to debug
l o g g i n g . b a s i c C o n f i g (f i l e n a m e=l o g f i l e , l e v e l=l o g g i n g .DEBUG, format=fmt)

”w+” means o v e r w r i t i n g a l o g f i l e .
l o g g i n g . F i l e H a n d l e r (l o g f i l e , ”w+”)

#Logger o b j e c t : l o g g e r name
l o g g e r = l o g g i n g . ge tLogge r (”ECON2020”)

Prepa re random d a t a s e t
n u m l i s t 1 = np . random . r a n d i n t (0 , 10 , s i z e =[10 , 1])
f o r i i n range (0 , l e n (n u m l i s t 1) + 1) :

t r y :
p r i n t (n u m l i s t 1 [i])

e x c e p t I n d e x E r r o r :
l o g g e r . e r r o r (” Exc ep t i on o c c u r r e d ” , e x c i n f o=True)

l o g g i n g . F i l e H a n d l e r (l o g f i l e) . c l o s e () # c l o s e your l o g f i l e .
l o g g i n g . shutdown () # c l o s e l o g g i n g

See your l o g f i l e i n your path .

61 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Logging: Back to In-Class Exercise

• Let’s change the below part (*) of in-class exercise code to
improve its accuracy.

• We want to check if there is not any duplicated index in (*).
• Rewrite code so that we can check it in a log file after running

the whole code.
Suppose we have a l o g g e r o b j e c t a l r e a d y .

Befo r e
Check the d u p l i c a t e d i n d e x (Check i f i t ’ s z e r o !)
g e d A f r i c a g r o u p s [g e d A f r i c a g r o u p s . i n d e x . d u p l i c a t e d ()] #(∗)

A f t e r
Log f i l e l e t s us know when we do no have any d u p l i c a t e d i n d e x .
i f sum(g e d A f r i c a g r o u p s . i n d e x . d u p l i c a t e d () == True) == 0 :

l o g g e r . debug (”No d u p l i c a t e d i n d e x ! ”)
e l s e :

l o g g e r . e r r o r (”ERROR: d u p l i c a t e d i n d e x ! ”)

62 / 117

Efficiency

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Efficiency
Conserve computing resource and save computing time.

Remark. Make your efforts toward improving efficiency as far as
you can ensure and maintain accuracy.

Techniques for improving efficiency:
1 Vectorization

2 Parallelization

3 High Performance Computing (HPC)

Other tips for improving efficiency:
• Keep in mind the trade-off between computing time and storage.
• Separate slow and fast code. (Similar motivation to a message at the

portability section: Separate directories by function.)
• Check accuracy first without taking a long time. E.g.) Use a subsample of

a large dataset to run everything; Solve a GE model in a narrower
geographical area than the entire study area. 64 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Vectorization
Vectorize everything you can.

Replace loops and multiple equations with:

• applying a procedure to multiple items

• matrix algebra

In order to do that,

• Know your data structure well

• Manipulate your data structure wisely to facilitate vectorizing

Vectorizing can shorten your code and save computation time.

65 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Vectorization: Example
Imagine a dataframe with three columns of data:

ID var1 var2 var3
1 𝑣𝑎𝑟11 𝑣𝑎𝑟21 𝑣𝑎𝑟31
2 𝑣𝑎𝑟12 𝑣𝑎𝑟22 𝑣𝑎𝑟32
...

...
...

...

Suppose that given constant weights for each variable you now wish
to generate a weighted sums column:
𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑠𝑢𝑚𝑖 = 𝑣𝑎𝑟1𝑖 ∗𝑤𝑒𝑖𝑔ℎ𝑡1+ 𝑣𝑎𝑟2𝑖 ∗𝑤𝑒𝑖𝑔ℎ𝑡2+ 𝑣𝑎𝑟3𝑖 ∗𝑤𝑒𝑖𝑔ℎ𝑡3

• You can of course loop through and calculate this row by row

• This can be sped up by using pandas apply() instead

• But the fastest way would be to vectorize this operation

66 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

(Cont’d) Vectorization: Example
To vectorize, note that the weighted sum is equivalent to the
diagonal of the variables matrix multiplied by the transpose of the
weights matrix:

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑠𝑢𝑚 = 𝑉𝑎𝑟 ∗𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑇

where

Var =

𝑣𝑎𝑟11 𝑣𝑎𝑟21 𝑣𝑎𝑟31
𝑣𝑎𝑟12 𝑣𝑎𝑟22 𝑣𝑎𝑟32

...
...

...

and

Weights =
[
𝑤𝑒𝑖𝑔ℎ𝑡1 𝑤𝑒𝑖𝑔ℎ𝑡2 𝑤𝑒𝑖𝑔ℎ𝑡3

]
Let’s test the performance of the three methods with code.

67 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

(Cont’d) Vectorization: Example
impor t pandas as pd
impor t numpy as np
impor t t ime

data = pd . DataFrame (np . random . r a n d i n t (0 , 10 , s i z e = [10000 , 3]) ,
columns = [” va r1 ” , ” va r2 ” , ” va r3 ”])

w e i g h t s = pd . DataFrame (np . random . r a n d i n t (0 , 10 , s i z e = [1 , 3]) ,
columns = [” we ight1 ” , ” we ight2 ” , ” we ight3 ”])

d a t a i t e r , d a t a a pp l y , d a t a v e c t o r = data . copy () , data . copy () , data . copy ()

I t e r r o w s ()
s t a r t = t ime . t ime ()
d a t a i t e r [” weightedsum ”] = 0
f o r ind , row i n d a t a i t e r . i t e r r o w s () :

d a t a i t e r . a t [ind , ” weightedsum ”] = row [” va r1 ”] ∗ w e i g h t s [” we ight1 ”] + \
row [” va r2 ”] ∗ w e i g h t s [” we ight2 ”] + row [” va r3 ”] ∗ w e i g h t s [” we ight3 ”]

p r i n t (” I t e r r o w s : ” , t ime . t ime () − s t a r t)

Apply ()
s t a r t = t ime . t ime ()
d a t a a p p l y [” weightedsum ”] = d a t a a p p l y . app l y (lambda row : row [” va r1 ”] ∗ w e i g h t s [” we ight1 ”] + \

row [” va r2 ”] ∗ w e i g h t s [” we ight2 ”] + row [” va r3 ”] ∗ w e i g h t s [” we ight3 ”] , a x i s = 1)
p r i n t (” Apply : ” , t ime . t ime () − s t a r t)

V e c t o r i z a t i o n
s t a r t = t ime . t ime ()
A = np . a r r a y (d a t a v e c t o r [[” va r1 ” , ” va r2 ” , ” va r3 ”]])
d a t a v e c t o r [” weightedsum ”] = A@(w e i g h t s [[” we ight1 ” , ” we ight2 ” , ” we ight3 ”]]) . T
p r i n t (” V e c t o r i z a t i o n : ” , t ime . t ime () − s t a r t)

68 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Parallelization
Multiple processors (CPUs) of a computer execute tasks
simultaneously.

69 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

When is Parallelization Useful in Economics?

• Simulations
• Compute equilibrium across independent markets, under different

initial conditions, parameter values, shock realizations

• Bootstrapping standard errors
• Randomly create hypothetical data set (“bootstrapped sample”)

many times, obtain the estimator from each bootstrapped sample,
and obtain its empirical distribution

• Dynamic programming (with large state space)
• Evaluate value functions under many different states within k-th

step of value function iteration

Note. Not all tasks are parallelizable: We cannot parallelize across
tasks/steps/iterations if the current one requires a previous one’s output
as an input

70 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Parallelization: Remark
Parallelization does not always save computation time. Care about
granularity and scalability of the problem when implementing
parallel processing.

• Granularity: The communication cost outweighs when the
division of tasks is too fine. That is, you may not benefit from
parallelizing when working with small datasets.

• Scalability: Scalable problems are easy to parallelize.

• Also, care about independence across tasks that are parallelized.

71 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Quiz: Sequential vs. Parallel Processing
• Which code runs faster: Code A or Code B?
• Both of them will do the same job. The only difference is

whether using parallel processing or not.
######## Code A ##########
impor t t ime , math , i t e r t o o l s
impor t numpy as np
#D e f i n e a f u n c t i o n : c a l c u l a t e d i s t a n c e between two p o i n t s
d e f d i s t (i n p u t s) :

x , y = i n p u t s
d i s t a n c e = math . s q r t ((x [0] − y [0]) ∗ ∗ 2 + (x [1] − y [1]) ∗ ∗ 2)
r e t u r n d i s t a n c e

i f name == ’ m a i n ’ :
Prepa re data
np . random . seed (1)
l o c 1 = np . random . r a n d i n t (0 , 10 , s i z e =[10 , 2]) #Genera te data : [1 0 , 2]
np . random . seed (2)
l o c 2 = np . random . r a n d i n t (0 , 10 , s i z e =[20000 , 2]) #Genera te data : [2 0 0 0 0 , 2]
Genera te a l l p a i r s i n l o c 1 & l o c 2
p a i r = [(coor1 , coor2) f o r coor1 , coor2 i n i t e r t o o l s . p roduc t (loc1 , l o c 2)]
r e s u l t =[] # s t o r e r e s u l t s
s t a r t = t ime . t ime ()
f o r i i n p a i r :

r e s u l t . append (d i s t (i)) #S t o r e r e s u l t s from the f u n c t i o n
end = t ime . t ime ()
p r i n t (end − s t a r t)

72 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

(Cont’d) Quiz: Sequential vs. Parallel Processing
######## Code B ##########
impor t t ime , math , i t e r t o o l s
impor t numpy as np
from m u l t i p r o c e s s i n g impor t Pool
#D e f i n e a f u n c t i o n : c a l c u l a t e d i s t a n c e between two p o i n t s
d e f d i s t (i n p u t s) :

x , y = i n p u t s
d i s t a n c e = math . s q r t ((x [0] − y [0]) ∗ ∗ 2 + (x [1] − y [1]) ∗ ∗ 2)
r e t u r n d i s t a n c e

i f name == ’ m a i n ’ :
np . random . seed (1)
l o c 1 = np . random . r a n d i n t (0 , 10 , s i z e =[10 , 2])
np . random . seed (2)
l o c 2 = np . random . r a n d i n t (0 , 10 , s i z e =[20000 , 2])
p a i r = [(coor1 , coor2) f o r coor1 , coor2 i n i t e r t o o l s . p roduc t (loc1 , l o c 2)]
r e s u l t = [] # s t o r e r e s u l t s
s t a r t = t ime . t ime ()
poo l = Pool (p r o c e s s e s =4) # s t a r t 4 p r o c e s s e s (cannot exceed the maximum p r o c e s s o r s) .
r e s u l t = poo l . map(d i s t , p a i r) # synch ronous p r o c e s s i n g
poo l . c l o s e () #P r e v e n t s any more t a s k s from be ing submi t t ed to the poo l
poo l . j o i n () #Wait f o r the worker p r o c e s s e s to e x i t
end = t ime . t ime ()
p r i n t (end − s t a r t)

Note. os.cpu count() or multiprocessing.cpu count() shows the number of processors in
your computer.

Note. if name == ’ main ’: should be written in your script when you use
multiprocessing. This clarifies what the current main program is and prevents Python
from running unintended function files. Windows users in particular must write this
when you use multiprocessing since, for example, newly spawned processes try to spawn
other new processes. See this discussion. 73 / 117

https://stackoverflow.com/questions/20360686/compulsory-usage-of-if-name-main-in-windows-while-using-multiprocessi

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

(Cont’d) Quiz: Sequential vs. Parallel Processing
• Python runs Code B slower than Code A, despite using parallel processing

in Code B!
• In this example, we use synchronous execution, in which your computer

blocks next processing until a result from each process is ready. A main
processor communicates with other processors after each processing
during execution.

• Recall the granularity and scalability:
In this example, once you increase the scale of the task of computing distances (say,
from 200,000 pairs to 20,000,000 pairs), you can easily see that the computation
becomes much faster with multiprocessing (i.e., the benefit from dividing tasks
outweighs the communication cost).

74 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

E.g.) Sequential vs. Parallel Processing
• One more example where parallelization makes it faster
• The program calculates distance between a pair of random points. Every

time it calculates distance, it calculates 5000 inverse matrices.
• pool.map() enables multiple processors to work at the same time by

sharing the whole task. That is, they start executing their given tasks
such as running loops for 5000 inverse matrices at the same time, which
reduces the computation time significantly.

Note. Another example where multiprocess execution really beneficial could be the case when
you use sleep function. Scraping usually requires sleep function to move to a next task.
Intuitively, one process with 60 sec sleep in total can divide into 30 sec sleep for each of
two processes.

75 / 117

(Cont’d) E.g.) Sequential vs. Parallel Processing
from m u l t i p r o c e s s i n g impor t Pool
impor t os , t ime , i t e r t o o l s , math
impor t numpy as np
This func c a l c u l a t e s d i s t a n c e between two p o i n t s and
i n the p roce s s , i t c a l c u l a t e s 5000 i n v e r s e m a t r i c e s .
d e f d i s t (i n p u t s) :

x , y = i n p u t s
d i s t a n c e = math . s q r t ((x [0] − y [0]) ∗ ∗ 2 + (x [1] − y [1]) ∗ ∗ 2)

C a l c u l a t e 5000 i n v e r s e m a t r i c e s
f o r i i n range (0 , 5 0 0 0) :

np . random . seed (i)
np . l i n a l g . i n v (np . random . r a n d i n t (1 ,10 , s i z e =[100 ,100]))

r e t u r n d i s t a n c e

i f name == ” m a i n ” :
Genera te random p a i r s o f two p o i n t s
np . random . seed (1)
l o c 1 = np . random . r a n d i n t (0 , 10 , s i z e = [5 , 2])
np . random . seed (2)
l o c 2 = np . random . r a n d i n t (0 , 10 , s i z e = [5 , 2])
p a i r = [(coor1 , coor2) f o r coor1 , coor2 i n i t e r t o o l s . p roduc t (loc1 , l o c 2)]

S e q u e n t i a l Execu t i on
s t a r t t i m e = t ime . t ime ()
r e s u l t s e q = []
f o r i tem i n p a i r :

r e s u l t s e q . append (d i s t (i tem))
p r i n t (” S e q u e n t i a l e x e c u t i o n i n ” + s t r (t ime . t ime () − s t a r t t i m e) , ” s econds ”)

Synchronous Execu t i on (poo l . map)
s t a r t t i m e m a p = time . t ime ()
poo l = Pool (p r o c e s s e s = os . cpu count ())
r e s u l t m a p = poo l . map(d i s t , p a i r)
poo l . c l o s e ()
poo l . j o i n ()
p r i n t (” P r o c e s s poo l map e x e c u t i o n i n ” + s t r (t ime . t ime () − s t a r t t i m e m a p) , ” s econds ”)

Choice of Synchronization
Synchronous execution:

• The master processor gives out a set of commands to the other processors
and waits for all of them to report before issuing the next set of
commands.

• The processes are completed in the same order in which execution was
started. A returned result is ordered.

• This is used in the previous quiz and example.

Asynchronous execution:
• A processor can be given a new task independent of the progress the other

processors have made with their old tasks.

• The order of results could get mixed up, but computation gets done
quickly in some cases.

• pool.apply async enables a processor to work for a next task without
waiting for the other processors to finish previous tasks.

E.g.) Asynchronous Execution
The program computes the sum, 02 + 12 + 22 + ... + 192. Every time it
calculates a square, it calculates 5000 inverse matrices.
impor t m u l t i p r o c e s s i n g as mp
impor t numpy as np
impor t os , t ime
This func j u s t r e t u r n s x , but i n the p r oce s s , i t c a l c u l a t e s 5000 i n v e r s e m a t r i c e s .
d e f i d e n t i t y (x) :
C a l c u l a t e 5000 i n v e r s e m a t r i c e s

f o r k i n range (0 , 5 0 0 0) :
np . random . seed (k)
np . l i n a l g . i n v (np . random . r a n d i n t (1 ,10 , s i z e =[100 ,100]))

r e t u r n x

This func r e t u r n s the sum from 0∗∗n + 1∗∗n + . . . + end num ∗∗n
d e f s u m p o w e r n l i s t (n , end num) :
Here a = 0 does not work .

a = [0]
This i s a c a l l b a c k func to add each term .
Without t h i s , poo l . a p p l y a s y n c r e t u r n s no th i ng .

d e f foo (x) :
a [0] += x ∗∗ n

poo l = mp. Pool (p r o c e s s e s = os . cpu count ())
f o r m i n range (end num) :

poo l . a p p l y a s y n c (i d e n t i t y , (m,) , c a l l b a c k = foo)
poo l . c l o s e ()
poo l . j o i n ()
p r i n t (a [0])

i f name == ” m a i n ” :
s t a r t t i m e a p p l y a s y n c = t ime . t ime ()
s u m p o w e r n l i s t (2 , 20) # n = 2 & end num = 20
p r i n t (” Apply Async e x e c u t i o n i n ”+s t r (t ime . t ime () − s t a r t t i m e a p p l y a s y n c) , ” s econds ”)

Callback Function
• In asynchronous execution (e.g., pool.apply async(),

pool.map async()), we can set a callback function.

• A callback function helps you with storing returned results as
you like. As in the below code example, you can use a list to
store the result. You could also store it in a dictionary (e.g.
with the function name as a key and returned result as its
value) by using a callback function.

r e s u l t = [] # s t o r e a r e s u l t
d e f c a l l b a c k (v a l u e s) :

r e s u l t . ex tend (v a l u e s) # s t o r e the r e s u l t i n the l i s t ’ ’ r e s u l t ’ ’ above .
s t a r t = t ime . t ime () # S t a r t t ime
poo l = Pool (p r o c e s s e s =4) # S t a r t 4 p r o c e s s e s
poo l . map async (d i s t , p a i r , c a l l b a c k = c a l l b a c k)
poo l . c l o s e ()
poo l . j o i n ()

• See What is a callback?

Note. You can also get results with methods (e.g., get()) instead of callback function. See
this for details.

https://stackoverflow.com/questions/1319074/parallel-python-what-is-a-callback
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.pool.AsyncResult.get

FYI: Chunksize
• Chunksize is workload assigned to each worker at a time. It is

hard to say how to choose optimized chunksize in every case.

• See the discussions: Pool’s chunksize-algorithm and
Data and chunk sizes matter.

https://stackoverflow.com/questions/53751050/python-multiprocessing-understanding-logic-behind-chunksize/54813527#54813527
https://medium.com/@rvprasad/data-and-chunk-sizes-matter-when-using-multiprocessing-pool-map-in-python-5023c96875ef

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Parallel Processing: Further Readings
We have covered only very basics of parallel processing so far. For
more detail, see for example:

• Judd, Chap 2.2.

• multiprocessing — Process-based parallelism (documentation)

• Multiprocessing to Make Python Code Faster

• Parallel Processing in Python

• Slides by Fernández-Villaverde, Guerrón, and Zarruk Valencia

• Practical guide by Fernández-Villaverde and Zarruk Valencia

81 / 117

https://docs.python.org/dev/library/multiprocessing.html
https://medium.com/@urban_institute/using-multiprocessing-to-make-python-code-faster-23ea5ef996ba
https://www.machinelearningplus.com/python/parallel-processing-python/
https://www.sas.upenn.edu/~jesusfv/Lecture_HPC_11_Parallelization.pdf
https://www.sas.upenn.edu/~jesusfv/Guide_Parallel.pdf

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

High Performance Computing (HPC)

• Even if you have written your code nicely to save computing
time, many tasks will take too long using affordable laptops

• In such situations, learn how to use HPC clusters, which should
be available at many research universities

• Oscar: Brown University’s Supercomputer

• Also, useful to know how to run code from Shell/Terminal
rather than in a GUI (graphical user interface)

82 / 117

https://docs.ccv.brown.edu/oscar/

How to Use Oscar (for Brown Faculty/Students)
• Create a new account for Oscar (from Quickstart Guide)

• Log in using Secure Shell (SSH):
• Mac/Linux: use Terminal
• Windows: use PuTTY, a free Secure Shell (SSH) client

• Open OnDemand (OOD): You can also use a web portal to run
GUI-based applications (e.g., Stata, Matlab, Rstudio)

• You can choose either interactive jobs or batch jobs depending on
job types. See the below links for details.

• Interactive Jobs : Small jobs with short run times and jobs that
require the use of a GUI. If your connection to the system is
interrupted, the job will abort.

• Batch Jobs : Your program can run for long periods of time in the
background, so you do not need to be connected to Oscar.

Note. Do not run CPU-intense or long-running programs directly on the login nodes! The login nodes are
shared by many users, and you will interrupt other users’ work. To get to the compute nodes from
the login nodes you can either start an interactive session on a compute node, or submit a batch job.

Note. For batch jobs, Windows users should see this for writing a batch sctipt.

https://docs.ccv.brown.edu/oscar/getting-started
https://docs.ccv.brown.edu/oscar/connecting-to-oscar/ssh
https://docs.ccv.brown.edu/oscar/connecting-to-oscar/open-ondemand
https://docs.ccv.brown.edu/oscar/submitting-jobs/shared-machine
https://docs.ccv.brown.edu/oscar/submitting-jobs/interact
https://docs.ccv.brown.edu/oscar/submitting-jobs/batch
https://wikis.ovgu.de/hpc/doku.php?id=guide:dos_unix_linebreaks

(Cont’d) How to Use Oscar (for Brown Faculty/Students)
• List all available modules in Oscar:

$ module a v a i l

To run code for Python 3 using Anaconda, need to type:
$ module l o a d python / 3 . 7 . 4
$ module l o a d anaconda /2020.02
$ conda i n i t bash

To create a new environment and/or to install packages using conda, see this

• Create a new directory on Oscar (˜ means /users/username) and
change current directory to /users/username/code:
$ mkdir ˜/ code
$ cd ˜/ code

• Several ways to transfer files (code, data, outputs) between your machine
and Oscar. I use FileZilla, a GUI program for Windows/Mac/Linux. Inside
FileZilla, we can also manage directories on Oscar.

• Run interactive jobs (load python/3.7.4 etc after reaching the interactive session)
$ i n t e r a c t
$ python y o u r f i l e . py

• Run batch jobs. See this for how to write and run a batch file.
$ sba tch y o u r f i l e . bat

https://docs.ccv.brown.edu/oscar/software/anaconda
https://docs.ccv.brown.edu/oscar/managing-files/filetransfer
https://www.brown.edu/information-technology/software/catalog/filezilla
https://docs.ccv.brown.edu/oscar/submitting-jobs/batch#submitting-jobs-using-batch-scripts

Reproducibility

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Reproducibility
So far, we have learnt how to improve research productivity in fine
steps. But, how to make the research reproducible? i.e.,

Q. How can we handle thousands of processes from raw data into
a final result in a manageable way?

Q. How can we track back thousands of revisions of our work?

Techniques for improving reproducibility:

1 Automation

2 Version control

86 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Automation: Motivation

Q. How can we handle thousands of processes from raw
data into a final result in a decent way?

• E.g.) Recall our ethnic conflict research project introduced in
the portability section

• Let’s consider the process from raw data into the dataset for
econometric analysis

• Code in the “build” folder execute this process

==
Project_EthnicConflicts/codes/build/
conflicts_event_to_group.py

(Construct a rebel group-level conflict event dataset from the UCDP conflict event dataset)
conflicts_event_to_group_match.py

(Combine rebel-level conflict event with matching status and construct some GIS baseline data)
match_ethnologue_Islam_groups.do

(Construct matching results of ethnic groups corresponding to rebels from by-hand matching)
rebel_homeland.py

(Construct GIS data of rebel groups’ homelands from matching results and Ethnologue map)
rebel_cell_time_vars.py

(Construct all rebel-cell-time-level variables used for econometric analysis)
==

87 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Automation: Motivation

Q. How can we handle thousands of processes from raw
data into a final result in a decent way?

• E.g.) Recall our ethnic conflict research project introduced in
the portability section

• Let’s consider the process from raw data into the dataset for
econometric analysis

• Code in the “build” folder execute this process
==
Project_EthnicConflicts/codes/build/
conflicts_event_to_group.py

(Construct a rebel group-level conflict event dataset from the UCDP conflict event dataset)
conflicts_event_to_group_match.py

(Combine rebel-level conflict event with matching status and construct some GIS baseline data)
match_ethnologue_Islam_groups.do

(Construct matching results of ethnic groups corresponding to rebels from by-hand matching)
rebel_homeland.py

(Construct GIS data of rebel groups’ homelands from matching results and Ethnologue map)
rebel_cell_time_vars.py

(Construct all rebel-cell-time-level variables used for econometric analysis)
==

88 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Automation: Problem
==
Project_EthnicConflicts/codes/build/
conflicts_event_to_group.py

(Construct a rebel group-level conflict event dataset from the UCDP conflict event dataset)
conflicts_event_to_group_match.py

(Combine rebel-level conflict event with matching status and construct some GIS baseline data)
match_ethnologue_Islam_groups.do

(Construct matching results of ethnic groups corresponding to rebels from by-hand matching)
rebel_homeland.py

(Construct GIS data of rebel groups’ homelands from matching results and Ethnologue map)
rebel_cell_time_vars.py

(Construct all rebel-cell-time-level variables used for econometric analysis)
==

• Messy. It will be messier as the project develops further.

• What if we revise one code of them, but forget running others?

• Or, what if we revise one code, but forget the order of running
others? Results might be affected by running these code in a
mistaken order...

89 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Automation: Some Improvement
==
Project_EthnicConflicts/codes/build/
1_conflicts_event_to_group.py
2_match_ethnologue_Islam_groups.do
3_conflicts_event_to_group_match.py
4_rebel_homeland.py
5_rebel_cell_time_vars.py

==

• Recall clarity: File names themselves should indicate their
means and objectives as much as possible.
The above naming makes the order clear...
Whenever we revise one code, we know which code should also be rerun
and their order...

• Still a little messy: run the revised code, wait until it finishes
running, run the next code, go and back between Python and
Stata, etc... Is that an inevitable process?

• No! There’s still a much better way!
90 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Automation: Solution

==
Project_EthnicConflicts/codes/build/
conflicts_event_to_group.py
conflicts_event_to_group_match.py
match_ethnologue_Islam_groups.do
rebel_homeland.py
rebel_cell_time_vars.py

==

We can avoid the above messy process if master.py can run
everything from conflicts event to group.py to
rebel cell time vars.py (including Stata .do file) and all the
code in the analysis folder as well at once!

91 / 117

Master Code Example: run software.py

impor t os , sys , subp roce s s , r e
You can run s t a t a , python , and a r c g i s (python 2) by u s i n g t h i s module .

d e f s t a t a (p a t h s t a t a , s c r i p t) :
”””Run s t a t a d o f i l e i n batch mode , and d e l e t e s the l o g f i l e ”””
s u b p r o c e s s . run ([p a t h s t a t a , ”/e ” , ”do” , s c r i p t])
os . remove (”{}. l o g ” . fo rmat (s c r i p t [0 : − 3])) #remove l o g f i l e
E x p l o r e by y o u r s e l f to show l i n e −by− l i n e command i n i p y t h o n c o n s o l e

d e f python (path python , s c r i p t) :
”””Run Python s c r i p t w i thout a rcpy ”””
run = s u b p r o c e s s . run ([path python , s c r i p t] , s t d o u t=s u b p r o c e s s . PIPE ,\\

s t d e r r=s u b p r o c e s s .STDOUT, u n i v e r s a l n e w l i n e s=True)
p r i n t (run . s t d o u t)

r e t u r n c o d e = 0 i f code runs s u c c e s s f u l l y .
i f run . r e t u r n c o d e != 0 :

s t o p s when p y f i l e has an e r r o r
s y s . e x i t (” E r r o r : { s c r i p t } ” . fo rmat (s c r i p t = s c r i p t))

d e f a r c g i s (path python2 , s c r i p t) :
”””Run Python s c r i p t w i th a rcpy ”””
run = s u b p r o c e s s . run ([path python2 , s c r i p t] , s t d o u t=s u b p r o c e s s . PIPE ,\\

s t d e r r=s u b p r o c e s s .STDOUT, u n i v e r s a l n e w l i n e s=True)
p r i n t (run . s t d o u t)
i f run . r e t u r n c o d e != 0 :

s y s . e x i t (” E r r o r : { s c r i p t } ” . fo rmat (s c r i p t = s c r i p t))

Master Code Example: master.py
impor t g lob , os , s y s
impor t r u n s o f t w a r e # Created a module t h a t e n a b l e s us to run s t a t a and python2 as w e l l .
p a t h S t a t a = g lob . g l ob (”C:\∗\ Sta ta ∗\Sta ta ∗ . exe ”) [0]
path Python2 = g lob . g l ob (”C:\ Python27\ArcGIS10 .∗\ pythonw . exe ”) [0]

d e f main () :
b u i l d ()
a n a l y s i s ()

d e f b u i l d () :
os . c h d i r (” b u i l d ”)
p r i n t (” C o n s t r u c t a r e b e l − l e v e l c o n f l i c t even t d a t a s e t s from the UCDP”)
r u n s o f t w a r e . python (s y s . e x e c u t a b l e , ” c o n f l i c t s e v e n t t o g r o u p . py ”)

p r i n t (” C o n s t r u c t by−hand matching r e s u l t s o f e t h n i c g roups c o r r e s p o n d i n g to r e b e l s . ”)
r u n s o f t w a r e . s t a t a (pa th Sta ta , ” m a t c h e t h n o l o g u e I s l a m g r o u p s . do”)

p r i n t (”Combine r e b e l − l e v e l c o n f l i c t even t w i th matching s t a t u s . ”)
r u n s o f t w a r e . python (s y s . e x e c u t a b l e , ” c o n f l i c t s e v e n t t o g r o u p m a t c h . py ”)

p r i n t (” C o n s t r u c t po l ygons f o r each r e b e l ’ s homeland u s i n g matching r e s u l t s . ”)
r u n s o f t w a r e . a r c g i s (path Python2 , ” r e b e l h o m e l a n d . py ”)

p r i n t (” C o n s t r u c t a l l r e b e l −c e l l −t ime− l e v e l v a r s f o r a n a l y s i s . ”)
r u n s o f t w a r e . a r c g i s (path Python2 , ” r e b e l v a r s . py ”)

os . c h d i r (” . . ”)

d e f a n a l y s i s () :
os . c h d i r (” a n a l y s i s ”)
Again , l i s t up code f o r e conomet r i c a n a l y s e s
os . c h d i r (” . . ”)

main () # Run the main program , i . e . run e v e r y t h i n g

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Automation
• One button to produce a paper from raw data — Write a single

master code that executes all code from beginning to end.
• Run this master code after any revisions of any code.
• The master code can also work well as a guide for the whole

research process.
• Python can do this on both Windows and Linux systems. (See

GS2014 Chap 2. for Windows/Linux shell script.)
Note. master.do in STATA, which calls python code as well, can also work. It

seems comfortable with STATA 16. See this. master.bat (a batch file
that we have learnt at the HPC part) could also work as a master code.

Note. Printing some (but again, minimum amount of) notes might be helpful to
check which code inside the master code is running. That also works as a
documentation about the entire research structure and flow. At the same
time, putting all the relevant information together inside the master code
would eliminate internal inconsistency.

94 / 117

https://www.stata.com/new-in-stata/python-integration/

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Version Control: Motivation
Q. How can we track back thousands of revisions of our

works? What can we do if...
• After employing a new empirical strategy, we notice a flaw in

the new one and want to go back to the previous strategy...
• A coauthor made code revisions. I want to check which parts

have been revised exactly to understand what drove changes in
the empirical results...

• After deleting a paragraph in the introduction of a paper, I
notice the deleted paragraph is better than the current version
of the introduction...

95 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Version Control: Motivation
• Should we keep all revised code after some important revisions

and remember which version is up-to-date?
• Do we care who in the research team made the revision?
• Have we revised the master code accordingly?

==
Project_EthnicConflicts/codes/build/
conflicts_event_to_group_20190321ST.py
conflicts_event_to_group_20190321ST_rev1.py
conflicts_event_to_group_20190321ST_rev2.py
conflicts_event_to_group_20190323MK.py
conflicts_event_to_group_20190323MK_STCheked.py
conflicts_event_to_group_match.py
master_build.py
master_build_rev.py
master_build_almostfinal.py
match_ethnologue_Islam_groups.do
rebel_homeland.py
rebel_cell_time_vars.py
rebel_cell_time_vars_ST.py
rebel_cell_time_vars_ST_MK.py

==

Dangerous!
96 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Version Control
• Multiple versions of files confuse you and your collaborators and make it

difficult to replicate results
• Version control system records and tracks all edits of code (and texts,

documents, data, outputs, etc) that you or your collaborators have made
through the entire research process

• It provides an organized revision history
• It facilitates going back and forth between multiple versions of the same

file, with easy comparisons between them
• It facilitates experimentations for editing any files without fear
• It facilitates collaboration:

• Collaborators can work on the same project by using their own local
directories

• They share changes they make on their local machines via a
web-based repository

• Collaborators can simultaneously work on multiple versions of the
same file with different branches and merge them

97 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Git & GitHub

• Git : a version control system that stores all the previous
versions of files within a project

• GitHub: a web-based service to host remote repositories for
collaborations that uses the Git system to save the complete
history of a project in a cloud

cf.) There are also other such services (e.g., GitLab/Bitbucket), but GitHub is
most popular

98 / 117

Setting up Git & GitHub (Again)

1 Create your GitHub account from here. Request the student free plan
from here, which allows you to create a free private repository.

2 Install Git from here.

3 Open GitBash (in Windows) or the Terminal (in Mac).

4 When we use Git on a new computer for the first time, we need to
configure a few settings, which will be used globally (i.e., for all projects).

Link Git to your GitHub account: Set your username and email same as in
your GitHub account.
$ g i t c o n f i g −−g l o b a l u s e r . name ” s t s u d a ”
$ g i t c o n f i g −−g l o b a l u s e r . e m a i l ” shunsuke tsuda@brown . edu ”

Remark. This course uses a command line interface for operating Git.
There are also some graphical interfaces:
Sourcetree/GitKraken/GitHub Desktop/RStudio (for R projects)

https://github.com/
https://education.github.com/discount_requests/new
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://www.sourcetreeapp.com/
https://www.gitkraken.com/
https://desktop.github.com/

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Starting a (Collaborative) Research Project
1 Create a remote repository online in GitHub (private):

“Project EthnicConflicts”
Invite collaborators from (Settings → Collaborators).

2 Click on ‘Create new file’ to create .gitignore in a main folder:
• GitHub cannot track a file with >100MB.
• Specify files/folders which we configure Git to ignore.
• See here for a collection of useful .gitignore templates.
• Look also into Git Large File Storage for sharing large datasets

3 Each member creates a local copy of this repository:
Decide its location and then clone it.
$ cd d : / Resea rch (Loc a l Path o f Each Resea rch Term Member)
$ g i t c l o n e h t t p s : // g i t h u b . com/ s t s u d a / P r o j e c t E t h n i c C o n f l i c t s

Go to the directory of the project and check the list of files inside it:
$ cd P r o j e c t E t h n i c C o n f l i c t s
$ l s

4 Now, ready to edit anything in this repository. Go to the next slide.
Remark. Do NOT use Git inside a Dropbox shared folder! The remote repository instead plays a

role for sharing.
100 / 117

https://github.com/github/gitignore
https://git-lfs.github.com/

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Workflow in a Typical Work Day
1 Guide to your local path to the project:

$ cd d : / Resea rch / P r o j e c t E t h n i c C o n f l i c t s (L oca l Path to Your P r o j e c t)

2 “Pull”: Update your local repo by downloading your collaborators’
changes from GitHub.
$ g i t p u l l

3 Work in your local repo. Make your changes and stage them.
$ g i t add −A

4 Commit your changes with a comment
$ g i t commit −m ” I d id someth ing f o r b e t t e r v i s i b i l i t y ”

Check if you are forgetting something to commit by:
$ g i t s t a t u s

Iterate 2. and 3. until you have done your work on the day.
5 Upload the changes to GitHub.

$ g i t push

Remark. Commit & comment often for easier tracking! Write a reason of your decision, too.
101 / 117

Source: https://backlog.com/git-tutorial/

https://backlog.com/git-tutorial/

Exercise 2

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Collaboration Exercise with Git & GitHub
Form groups, each consisting of 2 students. Nominate a group leader.
Aim. Experience how a joint research project goes with Git & GitHub.

0. The leader creates a (private) repository called “Project EC2020” and
inivites your group member.

1. All the members clone “Project EC2020” into your local directories and
navigate to that directory by GitBash (Windows) or the Terminal (Mac).
Unless otherwise noted, use the master branch (by default).

2. In your local directory, each of you generates the text file
“intro yourfirstname.txt”. Write about yourself (that you can share
with your friend) inside it.

3. Stage your changes, commit with a message, and try to push it. If you
cannot push it (because another collaborator pushed his/her commit
earlier), pull first and then push your commit.

4. Once pulling, check that in your local directory, you can see your friend’s
self-intro! Feel free to make a subfolder like “Project EC2020/texts”
(again, push this change if you did so).

104 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Collaboration Exercise (cont’d)
5. Edit a text file generated by another student in your group by writing your

image of the friend. Stage your changes, commit with a message, and try
to push it. Pull when necessary.

6. Pull. Check that the text file you generated has been revised by your
friend.

Now, in each group, nominate one student.

7. All students in each group edit the text file generated by the nominated
student. Stage your changes, commit with a comment, and try to push it.

8. Experience conflict. Resolve it together by discussing on which revision to
adopt in your group.

9. Track the history. Check revisions made so far.

It works better than having a “conflicted copy” in Dropbox. Still it makes the
process complicated. Important to divide tasks between collaborators to avoid
conflicts.

105 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Branches & Merging
Aim. Keep track of multiple versions of the same file with different branches.

Enable easy experimentations. Easy to compare across experimentations
and choose the optimal one by merging.

• Switch to a new branch and list all local branches:
$ g i t checkout −b temp shunsuke
$ g i t branch

(Drop -b when switching to a branch that already exists)

• Push the current branch and set the remote as upstream for sharing it
with collaborators:
$ g i t push −−se t −upstream o r i g i n temp shunsuke

• Switch to the master branch and merge the changes made in the new
branch back into it:
$ g i t checkout main
$ g i t merge temp shunsuke

• Delete a local branch & Delete a remote branch:
$ g i t branch −d temp shunsuke
$ g i t push −−d e l e t e o r i g i n temp shunsuke

106 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Collaboration Exercise (cont’d)
Now, in order to avoid the messy conflict, use branches and merging.

10. Each student creates the local branch called temp firstname. Push it to
the remote repository.

11. Each member of a group edits the text file of the nominated student in
each corresponding branch. After editing it, stage your changes, commit
with a comment, and push it.

12. Issue pull requests, assigning your collaborator as the reviewer. Compare
all members’ versions in the online repository. (Discuss in the group and
decide which version to adopt.)

13. Comment on texts.
(Anyone in each group) Merge the adopted branch into the master branch.
Finally, all members switch back to the master branch and pull.

107 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Pull Request

• Not a function of Git itself, but invented by GitHub first

• A pull request lets you notify your collaborators of changes
you’ve pushed to a branch in a remote repository on GitHub.

• Once a pull request is opened, you can discuss and review the
potential changes with your collaborators, before your changes
are merged into the master branch.

• Reviewers can provide line-by-line comments on code.
• Just make a pull request at the remote repository on GitHub on

the web.

cf.) hub commands: send a pull request to GitHub by command lines

108 / 117

https://github.com/github/hub

Some Useful Commands
• Check the current directory & Climb up in the folder hierarchy:

$ pwd
$ cd . .

• Check the commit history (e.g., 7 recent commits):
$ g i t l o g −7

Go back to the command line after git log by pressing q.

• Go back to the previous version of commit in the local directory (not in
the remote!)
$ g i t r e s e t −−hard [commit i d]

• Check the differences in a specific file with commit messages for the latest
commit and the commit two before:
$ g i t show HEAD i n t r o s h u n s u k e . t x t
$ g i t show HEAD˜2 i n t r o s h u n s u k e . t x t

• Git Cheat Sheet by GitHub Education

Git Cheat Sheet by GitHub Training

https://education.github.com/git-cheat-sheet-education.pdf
https://github.github.com/training-kit/downloads/github-git-cheat-sheet.pdf

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Git & GitHub: References
For more on practical usages, see:

• Jesús Fernández-Villaverde’s note (more on command lines)
• Heitor Pellegrina’s note

• Frank Pinter’s note (illustrations with GitKraken)
• Benjamin Skrainka’s note

For more detail, see:
• Software Carpentry. Version Control with Git. (MUST)

• Pro Git Second Edition (Detail documentations)

110 / 117

https://www.sas.upenn.edu/~jesusfv/Chapter_HPC_5_Git.pdf
https://sites.google.com/site/heitorpellegrina/
https://www.frankpinter.com/git/
http://ice.uchicago.edu/2012_presentations/Faculty/Skrainka/Talk_Git.pdf
http://swcarpentry.github.io/git-novice/
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

Assignment 2

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

Assignment 2: Code Cleanup
• In a journal publication process, authors also submit their code and data.
• However, quality of code does not affect the journal’s acceptance decision.
• Code of most papers published in top 5 economics journals are actually

messy.
• Let’s experience how the techniques we’ve learnt so far help their

improvements!
• Important to be capable of applying the principles we learnt not only to

Python but also to other programming languages.

Choose one of the following papers for this assignment:

1. Michalopoulos and Papaioannou (2016 AER) “The Long-Run Effects of
the Scramble for Africa” Use STATA.

2. Henderson et al. (2018 QJE) “The global distribution of economic
activity: Nature, history, and the role of trade” Use STATA.

112 / 117

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

1. Michalopoulos and Papaioannou (2016 AER)

Q. How does border artificiality (w.r.t ethnic partitioning)
contribute to conflicts in Africa?

• Download replication files from here.

Task. Clean and shorten the code to replicate Table1, Table2-A and
Table2-B.

• Use abstraction nicely.
• Feel free to write a master code in whichever Python or

Stata and/or shift to the functional paradigm.

113 / 117

https://www.aeaweb.org/articles?id=10.1257/aer.20131311
https://www.aeaweb.org/articles?id=10.1257/aer.20131311

Michalopoulos and Papaioannou (2016 AER)

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

2. Henderson et al. (2018 QJE)

Q. What is the role of natural characteristics in determining
the worldwide spatial distribution of economic activity?

• Download replication files from Adam Storeygard’s web.

Task. Separate the code for the part Table I, Table II and Table III
into multiple code or program, each of which implements a
separate task.

• Use abstraction nicely.
• Improve its clarity and maintainability by well-organized

(self-)documentations.
• Feel free to write a master code whichever in Python or

Stata and/or shift to the functional paradigm.

115 / 117

https://academic.oup.com/qje/article/133/1/357/4110418
https://sites.google.com/site/adamstoreygard/

Henderson et al. (2018 QJE)

Portability Clarity & Maintainability Exercise 1 Accuracy Efficiency Reproducibility Exercise 2 Assignment 2

FYI: ArcGIS in Economics Research

• Geographic Information System (GIS) is useful for wide fields of
economics research.

• Sophisticated use of it can increase the range of questions that
you can answer.

• The two papers in this assignment are good examples.

• Historical maps also expand research possibilities.

• Python is also valuable here in that it can automate managing
geo-spatial data (ArcPy, GeoPandas).

• Take GIS Institute organized by S4 (Spatial Structures in the
Social Sciences) at Brown after your core exam if interested
(check the application deadline)!

117 / 117

https://desktop.arcgis.com/en/arcmap/latest/analyze/arcpy/what-is-arcpy-.htm
https://geopandas.org/
https://www.brown.edu/academics/spatial-structures-in-social-sciences/gis-institute

	Portability
	Clarity & Maintainability
	Exercise 1
	Accuracy
	Efficiency
	Reproducibility
	Exercise 2
	Assignment 2

