2023

A
=

Spr

Prerequisite of ECON2020:
Assignment 0

Assighment 0: Due at 9am on the 2nd Meeting Day

@ Gentzkow, Matthew and Jesse M. Shapiro 2014. “Code and Data for the
Social Sciences: A Practitioner’s Guide.” (link) Read all.

@® Create GitHub (student discount version of Pro) account, install Git, and
link Git to your GitHub account (Follow the guidance in the next slide).

© After you have created your GitHub account, go to the invitation link sent
via canvas and accept the assignment. Then, you will have your private
repository for this assignment.

O Follow the instructions inside there!

After the instructor adds you to the “students” team, you will also have
an access to all class materials.
Note: We will use GitHub in the whole course for distributing and submitting your

assignments. Git & GitHub are also very useful for managing your research project. We
will come back to them in detail again in the software engineering part.

https://scholar.harvard.edu/files/shapiro/files/codeanddata.pdf

Setting up Git & GitHub

@ Create your GitHub account from here. Request the student free plan

Remark.

from here, which allows you to create a free private repository.
Install Git from here.
Open GitBash (in Windows) or the Terminal (in Mac).

When we use Git on a new computer for the first time, we need to
configure a few settings, which will be used globally (i.e., for all projects).

Link Git to your GitHub account: Set your username and email same as in
your GitHub account.

$ git config —global user.name "stsuda”
$ git config —global user.email "shunsuke_tsuda@brown .edu”

This course uses a command line interface for operating Git.
There are also some graphical interfaces:
GitKraken/GitHub Desktop/RStudio (for R projects)

https://github.com/
https://education.github.com/discount_requests/new
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

__ Course Intro_Python Intro_Data Types_Storage_Flow Control_Functions _Module & Packages _Floating Point_OOP_HW _
Two Objectives of This Course
Familialize yourself with basic concepts in

¢ Software engineering:
Become familiar with the functions of a computer and learn
how to use it wisely, write better code, and organize data nicely.

¢ Scientific computation:

How to numerically solve problems that cannot be solved by
hand.

5/131

e i byl B St (e G (M Wit Gt (g F: G005 Y
Software Engineering: Motivation

® Most economists need computers for their research:
design questionnaires; design experiments; scrape data; input
raw data from field; clean data; transform data; merge data;
execute statistical analyses; simulate models; format results;
produce plots; write documentations; write up a draft; make a
presentation

6/131

e i byl B St (e G (M Wit Gt (g F: G005 Y
Software Engineering: Motivation

® Most economists need computers for their research:
design questionnaires; design experiments; scrape data; input
raw data from field; clean data; transform data; merge data;
execute statistical analyses; simulate models; format results;
produce plots; write documentations; write up a draft; make a
presentation

® Most economists are amateur computer programmers without a
formal training of computer science.

That's fine. I'm an amateur, too.
® Most economists follow self-trained practices.

That's where problems lie. (Pick a paper from one of top 5
economics journals and see its code.)

® Why not import some sophisticated ways of engineering
softwares for improving our lives? 77131

o el DR e Simee e Cants) (Rrsiars WS B deseres (il e 00 LY
Principles of a Productive Research Practice

® Portability: Code should work in any machines without any changes.
Techniques — Directories

e Clarity & Maintainability: Easy, direct, and straightforward to
understand code. Easy to maintain and develop further any time.
Techniques — Project management, Abstraction, Documentation

® Accuracy: Programs do what researchers intend. Design to easily detect
if programs do what researchers did not intend.
Techniques — Debugging, Unit test, Logging

® Efficiency: Write algorithms that conserve computing resources and save
computing time.
Techniques — Vectorization, Parallelization, High Performance Computing

® Reproducibility: Automate the whole research process. & Be able to
reproduce any stage of research process.
Techniques — Automation, Version Control

8/131

__ Course Intro_Python Intro_Data Types_Storage_Flow Control_Functions _Module & Packages _Floating Point_OOP_HW _
Scientific Computation: Motivation

® In the 1st-year coursework, you are trained to analytically solve
a model to gain intuitive insights in a simple world

e Analytical tractability and simpleness are desirable features

9/131

__ Course Intro_Python Intro_Data Types_Storage_Flow Control_Functions _Module & Packages _Floating Point_OOP_HW _
Scientific Computation: Motivation

® In the 1st-year coursework, you are trained to analytically solve
a model to gain intuitive insights in a simple world

e Analytical tractability and simpleness are desirable features

® At the same time, focusing only on such a tiny class of models
decreases your research possibilitiies

e Many models do not have analytical solutions (or take infinite
amount of time if computing by hand)
¢ Quantitative features are also important

® Models should explain data not only qualitatively but also
quantitatively
® Need to simulate the model for this purpose

10/131

__ Course Intro_Python Intro_Data Types_Storage_Flow Control_Functions _Module & Packages _Floating Point_OOP_HW _
Scientific Computation: Motivation

® In the 1st-year coursework, you are trained to analytically solve
a model to gain intuitive insights in a simple world

e Analytical tractability and simpleness are desirable features

® At the same time, focusing only on such a tiny class of models
decreases your research possibilitiies

e Many models do not have analytical solutions (or take infinite
amount of time if computing by hand)

¢ Quantitative features are also important

® Models should explain data not only qualitatively but also
quantitatively
® Need to simulate the model for this purpose

® Cover numerical differentiation and integration, nonlinear

equation-solving, and numerical optimization
11/131

Computers are fast, but not as wise as humans
® Numerical computations are not just the magic to implement
things that human cannot do by hand.

® Always risky: we cannot directly check if a solution obtained by
a computer is correct.

® Accuracy of results depends on human’s understanding of
limitations of computers.

12/131

__ Course Intro_Python Intro_Data Types_Storage_Flow Control_Functions _Module & Packages _Floating Point_OOP_HW _
Computers are fast, but not as wise as humans

® Numerical computations are not just the magic to implement
things that human cannot do by hand.

® Always risky: we cannot directly check if a solution obtained by
a computer is correct.

® Accuracy of results depends on human’s understanding of
limitations of computers.

® Choose and apply appropriate numerical methods to solve
problems.

e Understand trade-offs between various numerical methods.

e Various applications from economics research will illustrate
these points in class.

13/131

e i byl B St (e G (M Wit Gt (g F: G005 Y
Worth Investing

® Recent development of computers and algorithms, and
diversification of data sources are remarkable.

® Examples include, but do not limit to:
Use satellite imageries to measure urban road congestion, environment
damage in tropical forest, infrastructure damage by civil war, housing
quality in a slum, etc;
Elicit internal ideology of politicians from text and/or voice data;
Use mobile phone metadata to infer social networks and migration;
Develop smartphone app to collect GPS coords of commuter trips; Scrape
messages of terrorist organizations from a dark web;

® Solid programming, software engineering, and computational
skills are becoming more and more valuable for increasing your
research possibilities!

14 /131

o el DR e Simee e Cants) (Rrsiars WS B deseres (il e 00 LY
Summary

This course familializes basic concepts in

¢ Software engineering;:
Use computer wisely; Write better code; Organize data nicely

® Improve portability, clarity, maintainability, accuracy,
efficiency, and reproducibility of economics research
projects

¢ Scientific computation:
How to solve problems that cannot be solved by hands.

® Numerical differentiation and integration; Equation
solving; Numerical optimization
® Applications in economics research

Though we use Python, these concepts are language-agnostic.

15/131

Python Basics

Acknowledgement and References

| deeply thank Guixing Wei for sharing his lecture notes, on which
this lecture is partly based.

This lecture also uses the following resources:
® QuantEcon

® Python for Economists by Alex Bell

Other references (can use them as dictionaries):

® Introducing Python

® Python for Data Analysis

17/131

https://www.brown.edu/academics/spatial-structures-in-social-sciences/people/guixing-wei
https://quantecon.org/
http://alexbell.net/pyseminar.html
https://www.amazon.com/Introducing-Python-Modern-Computing-Packages/dp/1449359361/ref=sr_1_6?keywords=Introduction+to+Python&qid=1571422208&sr=8-6
https://www.amazon.com/Python-Data-Analysis-Wrangling-IPython/dp/1491957662/ref=sr_1_5?keywords=Python+data+science&qid=1571422313&sr=8-5

_Coresle o DEewpe Sees e Cants) fsios WSt B deser (il ek 000 L0
Preliminary Remarks

® Do not spend too long time on sitting down with a textbook to
study Python itself.

e Rather, find and implement tasks which directly connect to
your research projects using Python.

® When doing your own research, you have to teach yourself a lot
of things.

® Make a good habit of resolving technical questions by yourself,
by googling, Python Documentation, Stack Overflow, etc.

® A bad habit is to ask a friend/TA/lecturer: “What does this
error mearn? How can we resolve it?”
> 99% of errors can be resolved by googling.

® \We focus on Python 3.x, not 2.7. See, for example, this for the
difference between Python 2 and 3.

18/131

https://docs.python.org/3/index.html
https://stackoverflow.com/
https://www.guru99.com/python-2-vs-python-3.html

| Gemalmy i B S e G (M Wit S Giburs ey Fu: G005 B
Use Your Knowledge Wisely!

e Knowledge of one programming language helps to learn
another programming language.

e Different programming languages can execute similar
operations.

® |f you have experiences in other languages and if you have in
mind what you want to execute, then some cheatsheets of
translations across languages help a lot:

® Stata<>Python; Stata<>Pandas
® Matlab/Juliac>Python; Matlabe>Numpy

19/131

http://www.danielmsullivan.com/pages/tutorial_stata_to_python.html
https://cheatsheets.quantecon.org/stats-cheatsheet.html
https://cheatsheets.quantecon.org/
http://mathesaurus.sourceforge.net/matlab-numpy.html

_ Course Intro_ . _Data Types Storage Flow Control Functions Module & Packages Floating Point OOP HW _
Overview

® Why Python?

® Integrated Development Environment (IDE) & Spyder
® Data types & Basic Operations

® Storage: RAM vs Disk

® Flow Control: Conditional Statements & Loops

® Functions

® Modules & Packages

Develop and Import your Own Modules
NumPy & Pandas

Regular Expressions

Other Useful Packages (for Economists)

® Floating-Point Arithmetic

® Object-Oriented Programming

20/131

Why Python?

A growing number of people use Python!

® The Incredible Growth of Python
® Becoming the world's most popular coding language

High readability: the code looks very close to how humans
think.

Free, flexible, and a lot of packages for a wide range of
purposes are being developed.

Python can do most things that Stata/Matlab can do.
Suitable for handling with large-scale datasets.

High speed of numerical computation:
Comparison across numerical computing language in GARCH

But not necessarily the best for many tasks!

21/131

https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://www.economist.com/graphic-detail/2018/07/26/python-is-becoming-the-worlds-most-popular-coding-language
https://voxeu.org/content/which-numerical-computing-language-best-julia-matlab-python-or-r

__ Course Intro_Python Intro_Data Types_Storage_Flow Control_Functions _Module & Packages _Floating Point_OOP_HW _
IDE & Spyder

® Integrated Development Environment (IDE): a program which
integrates several tools, such as text editor, debugger, search
for libraries, etc.

® Spyder: a free IDE which comes with Anaconda.

® Some features of Spyder:

® Variable explorer

® Offers built-in integration with many popular scientific
packages

® |Python console

® There are also many other popular IDEs
(e.g., PyCharm; IDLE, etc).

® Jupyer Notebook, a popular web-based application of

organizing codes, will also be used in later sections.
22 /131

https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://www.spyder-ide.org/

What Spyder looks like

Help: info of an object
Variable explorer: info of variables

Current Directory File explorer: files in current directory

® Spyder Python 3. =] X
Fle Edt Search So R Debug Comsoles
OsgsEe »rEBERE W & 4 [Cilsrs¥rassh B
- G VLiema¥enssaiurtae) oy T TRe ox
] ey O 4 SourcalConscks = Object] 'K
object by pressng i front of
Consol
7
Script filez: Where you write your
code
o
[Corsc 1/4 0 (X

Python 3.7.3 (default, Apr 24 2019, 15:29:51) [MSC v.1915 64 bit (AMD64)]
Type “copyright”, "credits® or "license” for sore information.

Python 7.6.1 -- &n enhanced Interactive Python.

In (1): |

IPython Console

ol | History g

Pemissions: AW End-of-lines: CALE Encoding: VTS

Une: 7 Colum: 1 Memory u§3/131

Programs and Run

® In Assignment 0, you have already written your first
program in a script file.

® How to run your code in Spyder:
® Run a whole script file: click @) in the previous slide.
® Run a part of your code: enclose a part with “#%%" and
click (2) in the previous slide. In the next slide, we will
show how this looks like.

24 /131

Run the Part of Code

® Spyder (Python 37)

- x
Fle Edi Search Sowce Run Debug Consoles Projects Tools View Help
ODsz*Ee »BERE o il BX Feé & [Colbsenimsn s A
Bt - O Wsarsensca Dy 2% Hip ax
£ SourceCorsole = Obiect] V& &

) I
e g

u ean get help of any object by pressing Curb in front of
r on the Editer or the Consale.

Run this part !

sls0 be shown automatically after writing a left
parenthesis next 1o an object. You can activate this behavior in

g > e

1lc = "Computing for Economists” New t0 Spyder? Read our 1.

12print(c)

Helo | Vorathe erclenr | File sorer
Puihon conscle
(3 Corson1/A0)

[Python 3.7.3 (default, Apr 24 2019, 15:29:51) [MSC v.1915 64 bit (AMDG4)]
Type “copyright”, “¢redits” or "license” for more information

IPython 7.6.1 -- An enhanced Interactive Python
IIH [e5E)

print(b
| econzeze

In [2):

Python corecle History log

Pesmissions: BW End-of-lines: CRLF Encoding: ASCI) Une: 7 Columnc 8 Memory: 4%

25/131

__ Course Intro_Python Intro_Data Types_Storage_Flow Control_Functions _Module & Packages _Floating Point_OOP_HW _
IPython Console in Spyder

Alternatively, you can type inputs directly and see
outputs in IPython console.

We use Python 3.X.

In [9]: 2xx3

Out [9]: 8

In [10]: 2-4

Out [10]: -2

In [11]: 8/5

Out[11]: 1.6

In [12]: print("Hello")
Hello

In [13]:cd #current directory
C:\Users\stsuda

26 /131

__ Course Intro_Python Intro_Data Types_Storage_Flow Control_Functions _Module & Packages _Floating Point_OOP_HW _
Data Types

Python has four basic data types:
e Boolean: True, False
e Number: Integer, Floating, Complex
e String: Sequence of letters

e Collection: List, Tuple, Dictionary, Set, and Array
(NumPy)

27 /131

| Gerealmy Fyiienlims o G St e G (M Vel S Giburs (g F: G005 HY
Boolean, Number, and String

Boolean

In : e =1 ==0
e

Out: False

In : type(e)

Out: bool

Integer

In : ¢c = - 3
In : type(c)
Qut: int

Float

In : o = 123.456
In : type (o)
Out: float

String

In : n = ’econ’
In : type(n)
Qut: str

28 /131

__ Course Intro_Python Intro_Data Types_Storage_Flow Control_Functions _Module & Packages _Floating Point_OOP_HW _
Basic Operations — Basic Arithmetic

a = 10, b = 3, ¢ = False, d = True
In : a,b,c,d = 10,3,1==0,1>0

In : a+b #addition

Out: 13

In : a-b #subtraction
Qut: 7

In : axb #multiplication
Out: 30

In : a/b #division

Out: 3.3333333333333335
In : a**b #exponentiation
Out: 1000

29/131

| Gerealmy Fyiienlims o G St e G (M Vel S Giburs (g F: G005 HY
Basic Operations — Boolean, Numbers, and Strings

Boolean
In : bool() # Give the boolean value "False”
Out: False
In : bool("")
Out: False
In : bool(a) # Give the boolean value "True”
Out: True
In : bool("econ")
Out: True
Boolean 4+ Numbers
In : a+ c # (False =0 or 0.0)
Out: 10
In : a+d# (True =1 or 1.0)
Out: 11
Strings
In : str(a)
Out: '10°
In : "Brown—' 4+ ’'econ’
Out: ’'Brown—econ'’
Numbers + Strings (ERROR!)
In : a + 'Brown’
Traceback (most recent call last):
File "<ipython—input —2—49615062b033>",

a + 'Brown’

TypeError: unsupported operand type(s) for
In : str(a) + "Brown”
Out: "10Brown’

line 1,

without any values

for any values

in <module>

"int' and ‘'str’

30/131

__ Course Intro_Python Intro_Data Types_Storage_Flow Control_Functions _Module & Packages _Floating Point_OOP_HW _
Collection Types — List & Tuple

® List: comma-separated elements enclosed by the square
brackets (mutable: can be modified)

Empty list
In @ a =[]
In : type(a)
Out: list

Nonempty list

In : a=1[1, 2, 3, 4]
...1oa

Out: [1, 2, 3, 4]

® Tuple: comma-separated elements enclosed by the parentheses
(immutable: cannot be modified)

Empty tuple
In : b= ()
In : type(b)
Out: tuple

Nonempty tuple
In : b=(1, 2, 3, 4)

31/131

| Caresle sylioliss 0 00 Stmes e ants) (frsiers WSt deseres (il e 00 L0
Collection Types — Dictionary & Set

® Dictionary: consists of key-value pairs enclosed by curly
brackets (mutable)

Empty dictionary

In :c = {}
In :type(c)
Out:dict

Nonempty dictionary
In : ¢ = {1: "Apple”, 2: "Orange”} #keys: 1, 2 & their values: "Apple”, "Orange”

Lonoc
Out: {1: 'Apple’, 2: ’'Orange'}

e Set: an unordered collection of distinct elements (mutable)

Empty set
In :d = set()
In :type(d)
Out:set

Nonempty set
In : d = set([1,2,3,3])
:d

Out: {1, 2, 3}

32/131

Operations of List — Indexing/Slicing/Editing

In : e=[1,1,2,3,5,8,13,21,34]
len(e) # Get the length of the list

Out: 9

Extract elements or a part of the list

In : e[0] # Indexing starts at 0, NOT 1!
Out: 1

In : e[—1] # Indexing starts at —1 backwards!
Out: 34

In : e[3:6] # Get a list with the index from 3 to 5
Out: [3, 5, 8]

In : e[:] # Get a whole list

Out: [1, 1, 2, 3, 5, 8, 13, 21, 34]

A dot calls a method (function) bundled into an object.

In the case below, the method is a function "index()” and an object is a list "e”
We will cover this point in the Objected Oriented Programming (OOP) section later.
In : e.index(21) # Return the index of the value 21
Out: 7
In : e.index (1) # Return the first index if we have duplicate values.
Out: 0
Edit elements inside the list
In : e[2] = 4 # Change the element with index 2
Looe
Out: [1, 1, 4, 3, 5, 8, 13, 21, 34]
In : e[1:3] = ['brown’, 'econ'] # Change the elements with the index from 1 to 2.
Looe
Out: [1, 'brown', ‘'econ', 3, 5, 8, 13, 21, 34]
In : e[1:3] = [1, 2, 2] # Change the elements with the index from 1 to 2.
te

Out: [1, 1, 2, 2, 3, 5, 8, 13, 21, 34]

In : del e[3] # Delete the element with the index 3.
Loutoe

Out: [1, 1, 2, 3, 5, 8, 13, 21, 34]

Operations of List — Concatenation & Repetition
— List of Lists

Concatenation

In : a=[1,2,3]
: b= 1[4,5,6,7,8]
In : a+b
Out: [1, 2, 3, 4, 5, 6, 7, 8]
In : b+ a
Out: [4, 5, 6, 7, 8, 1, 2, 3]
Repetition
In : econ = ["Brown”, "Econ”, "Dept”]
rept = econx3
rept
Out: ['Brown', 'Econ', 'Dept’, 'Brown’, 'Econ’, 'Dept’, 'Brown’, 'Econ', 'Dept’]
Creating a list containing [major, student] pair lists
In : major_student_pair =
major = ["Political Economy”, "Development Economics”, "Game Theory"]
student = ["An", "Ken”, "Shun”]
major_student_pair = [[major[0], student[0]], [major[1l], student[1]], \
[major[2], student[2]] # (Line continuation by \)
. major_student_pair
Out:
[['Political Economy’', 'An'], [’'Development Economics’, 'Ken'], ['Game Theory', 'Shun']]
In : major_student_pair [1]
Out: [’'Development Economics’', 'Ken']

In : major_student_pair [1][0]
Out: 'Development Economics’

Operations of List — Some Methods for Lists

e=1[1,1,2,3,5,8,13,21,34]
e.append(55) # Append 55 to the list
e

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

= [3, 2, 3]
= [101, 100, 99]
.count(3) # Count the number of 3

NY oo

a.sort() # Sort a

a

[2, 3, 3]

x = sorted(b) # x is sorted b
X

[99, 100, 101]

a.extend(b) # Append elements of b to a
a # See the difference from a + b. Here, a itself has changed!
[2, 3, 3, 101, 100, 99]

a.append(b) # Append b to the above
a # Now, list b comes inside list a
[2, 3, 3, 101, 100, 99, [101, 100, 99]]

Operations of Dictionary — Keys, Values, and ltems
— Membership
— Remove & Update

Create a dictionary from a list

In : isocnt = [['SEN’, ’'Senegal'], ['NGA', 'Nigeria'], ['MAR’, "Morocco']]
...: dictiso = dict(isocnt)

...: dictiso

Out: {'SEN’': ’'Senegal’, 'NGA’': ’'Nigeria', 'MAR': 'Morocco'}

In : len(dictiso) # Get Length of dictionary

Out: 3

In : dictiso ['SEN"] # Indexing

Out: ’'Senegal’

In : dictiso.keys() # Get all the keys
Out: dict_keys (['SEN’, 'NGA’', 'MAR'])

In : dictiso.values() # Get all the values

Out: dict_values (['Senegal’, 'Nigeria', "Morocco'])

In : dictiso.items() # Get the all the items

Out: dict_items ([('SEN", 'Senegal’), ('NGA', 'Nigeria'), ('MAR’', "Morocco')])
In : 'NGA’" in dictiso.keys() # Whether a key is in a dictionary

Out: True

In : "Nigeria’ in dictiso.values() # Whether a value is in a dictionary
Out: True

In : ('NGA', "Nigeria’') in dictiso.items() # Whether an item is in a dictionary
Out: True

In : dictiso.clear() # Remove all all the elments of a dict object

...: dictiso

Out: {}

In : dictisol {1: 'Senegal’, 2: 'Nigeria', 3: 'Morocco’}

dictiso2
dic

= {2: ’'Senegal’, 4: 'China’', 5: ’'Japan'}

sol.update(dictiso2) # Update a dict object using another dict object
...: dictisol

Out: {1: 'Senegal’, 2: ’'Senegal’, 3: 'Morocco’, 4: 'China’, 5: ’'Japan'}

In

Out:

In

Out:

In

Out:

Out:

In

In

Out:

In

Out:

In

Out:

In

Out:

In

Out:

Out:

Out:

Operations of Set

- [1.1,2,3,5,8,13,21,34]
= set(e) # Create set objects from a list

, 8, 13, 21, 34}
2,3,5,8,13,21 34} #Create set objects

1, 2, 3, 5, 8, 13, 21, 34}
Length of a set object

Oogﬁ(m(m,a—n—am
=} Il -
L] ~ N
- -

Whether 8 is in g or not.

— ©
2 -
o 5

o

.2,3,4,5}
6,7.8
u

.6,7,8}
| b # Union of two sets

-
[N]
w

4, 5,6, 7, 8}
Intersectlon of two sets

|
o
R
o

&)
| -

a b # Get elements in either set but not in both
4, 6, 7, 8}

=a—>b # Get the elements in set a but not in set b
, 3, 4}

(8) # Add & discard an element from a set object

1, 2, 3, 4, 8}
.discard (8)

A0 00 000N 0008000
- =
w

1, 2, 3, 4}
c.clear () # Clear all elements
c

set ()

Operations of Tuple — Packing & Unpacking

A comma defines a tuple.
In : a=1,2,3
©oa

Out: (1, 2, 3)

A tuple with a single element.
Remind that a comma defines a tuple.

In : b=1,

...t b

Out: (1,)

What happen?

In @ ¢ = (1)

...:1 C # integer

Out: 1

Packing

In : d = (3,4,5) # same as d = 3,4,5
:d

Out: (3, 4, 5)

Unpacking

In : one, two, three = d
two

Out: 4

Operations of Tuple — Indexing & Slicing

Indexing and Slicing

Same as list operations.
In : d = (3,4,5)
...: d[0]

Out: 3

In : d[-1]

Out: 5

In @ d[1:2]

Out: (4,)

In @ d[:2]

Out: (3, 4)

In @ d[:]

Out: (3, 4, 5)
In @ d[—2:]

Out: (4, 5)

In : d.index(3)
Out: 0

Try to modify an element
In : d[0] = 9 # ERROR because tuple is immutable!
TypeError: 'tuple’' object does not support item assignment

Clear tuple
In : del d

When We Need Tuple

e List and tuple look similar, but tuple is more useful
than list in terms of
® immutability: when you would not like to change any
element by accident
memory-saving
® dictionary keys

In : import sys # System—specific parameters and functions
In : List = [1]*1000
: Tuple = (1,)%1000
In : sys.getsizeof(List) # Memory size of list
Out: 8064
In : sys.getsizeof (Tuple) # Memory size of tuple
Out: 8048

As dictionary keys

In : dictiso = dict ([[(1,), 'Senegal’], [(2,3,4), 'Nigeria'], [6, '"Morocco']])
...: dictiso # Tuple can become a dictionary key.

Out: {(1,): 'Senegal’, (2, 3, 4): 'Nigeria', 5: "Morocco'}

In : dictiso = dict ([[[1], 'Senegal’'], [[2,3,4], 'Nigeria'], [5, '"Morocco’']])
...: dictiso # List cannot!
TypeError: unhashable type: 'list’

40/131

__ Course Intro_Python Intro_Data Types - Flow Control Functions Module & Packages Floating Point OOP HW _
RAM vs. Disk

e RAM:

® Temporary storage. Once you close Python, all variables
and data disappear.
® Faster processing.

e Disk:
® Permanent storage. Even if you close Python, all

variables and data do not disappear.
® Slower processing.

41/131

| Gerealimy Gy Ui o o e G (Mo Wit Gbures ey Fun: G005 (5
Writing & Reading

Writing to RAM (This is what we have done so far.)
In : a = "Linel: This is test A.’
b = 'Line2: This is test B.’

Woriting to Disk
"w" claims writing.
If "testfile.txt” already exists in a current directory (cd), the file is overwritten.
If not, the file "testfile.txt” is generated.
In : file = open(r”testfile.txt”,"w”) # open the file
: file.write('Linel: This is test A.\n') # \n claims starting a newline.
file.write('Line2: This is test B.')
file.close() # Must close the file # Check the file in cd.

Alternative way: close the file automatically.
In : with open(r”testfile.txt”,"w") as f: # open the file
A f.write('Linel: This is test A.\n')
f.write('Line2: This is test B.")

Reading vars in RAM (This is what we have done so far.)
In : a
Out: ’'Linel: This is test A.’

Readig a file in Disk

"r" claims reading.

"testfile.txt” must exist in the cd.

In : file = open(r”testfile.txt”,”r"”) # open the file
file .read ()
file.close() # Must close the file

Alternative way: close the file automatically.
In : with open(r”testfile.txt”,”r") as f: # open the file
: f.read ()
42 /131

Counting 100 thousands: RAM vs. Disk

import time

RAM
In : start = time.time()
a=20
for i in range(1,100001):
a+=1
end = time.time() — start

print ("elapsed time:{0}".format(end) + "[sec]")
elapsed time:0. 003101825714111328[sec]

Woriting a file and store a counter var
In @ counter = r"counter.txt”
with open(counter,”w”) as f: # open the file
f.write(str(0))

Disk
In : start = time.time()
for i in range(1,100001):

with open(counter,”r") as f:
a = int(f.read())

with open(counter,”w") as f:
f.write(str(a + 1))

print ("Count to {0}!".format(a + 1))

end = time.time() — start
. print ("elapsed time:{0}".format(end) + "[sec]")
elapsed time:52.164246559143066[sec]

43/131

_ Course Intro_Python Intro_Data Types Storage . .- _Functions Module & Packages Floating Point OOP HW _
Flow Control

You may want to write code block based on
conditions/criteria.

You may want to apply the same operation element
by element.

Conditional statement: If statement

Loops
® For-loops
® While-loops

44 /131

_ Course Intro_Python Intro_Data Types Storage . .- _Functions Module & Packages Floating Point OOP HW _
If-statement

Python needs indentation!
In : a =2
b =4
if a*2 > b:
print ("a*2 > b")
elif a*2 < b:
print ("a*2 < b")
else:
...: print("a*x2 = b")
File "<ipython-input-56-21036570a311>", line 5
print("ax2 > b")

IndentationError: expected an indented block

This is the correct way.
In : a = 2
b =4
if a*x2 > b:
print ("a*2 > b")
elif a*2 < b:
print("a*2 < b")
else:
Lo print("a*2 = b")
ax2 = b
45/131

__Course Intro_Python Intro_Data Types_Storage_Flow Control_Functions _Module & Packages _Floating Point_OOP_HW _
For-Loops

Simple loop

In :for j in (1,2,3):

print(j)
1
2
3
range (m) is from 0 to m —1
In :for i in range(3):
A print (i)
0
1
2
range (n,m) is from n to m —1
In :for i in range(2,4):
print(i)
2
3
range(n,m,s) is from n to m-1 with s steps
In :for i in range(1,6,2):
print(i)
1
3
5
List containing strings
In :cnt = ["US”, "UK", "France”]
...:for j in cnt:
print(j)
us
UK
France

46 /131

__Course Intro_Python Intro_Data Types_Storage_Flow Control_Functions _Module & Packages _Floating Point_OOP_HW _
While-Loops

Plus 1 until "econ" reaches to 10
In :econ =7

.:while econ < 10:

print (econ)

P econ += 1
...:print("Break!")
7
8
9
Break!

47 /131

__Course Intro_Python Intro_Data Types_Storage_Flow Control_Functions _Module & Packages _Floating Point_OOP_HW _
List Comprehension

Create a list by loop within list.
In : a = [1,2,3]
: b =1[i -1 for i in al
... b
Qut: [0, 1, 2]

Create a list by loop within list with if-statement.
In : ¢ = [i for i in a if i > 1]

L..oC

Out: [2, 3]

48/131

Ranks of Loops and If-statement

In : for i in range(1,2):
for j in range(1,5): # Needs indentation for inside loop
print (i + j)

:print ("End of Loop") # Good to indicate the end of the loop

g wWwN

End of Loop

In : for i in range(1,3):
if i < 2: # Needs indentation for inside if-statemnt
print (i)

:print ("End of Loop") #End of loop

End of Loop

Break and Continue

In :nameslist =["Tom"]*100 + ["Ken"]

Break
In :for name in nameslist:
if name == "Ken":
print ("I found Ken!")
break

I found Ken!

Continue
In :for name in nameslist:
if name == "Ken":
continue #Skip next line and move to a next loop.
print ("I found Ken!")

50/131

_ Course Intro_Python Intro_Data Types Storage Flow Control . - Module & Packages Floating Point OOP HW _
Functions

® Functions help us to:
® Reuse your code in different occasions.
® Avoid copying and pasting for repetitive tasks.
® Logically divide your project into a set of different
sub-tasks, which is easier to manage.

51/131

| Gerealiimy Gyt Uit B e St (e G 100 0 Wit Gabures (g Fu: G085 B
E.g.) Functions

Function without returmns
In : def g(e,c,o,n):

d = e*xc*o*n
Lo print (d)
In : g(1,2,3,4) # Call function g()

24

Function with a single return

In : def g_return(e,c,o,n):

e return e*c*o*n

In : g_return(1,2,3,4) # Call function g()
Qut: 24

Functions with multiple returns

In : def h(e,c,o,n):

P return e,c,o,n

In : h(1,2,3,4) # Call function h()
OQut: (1, 2, 3, 4) # tuple

In : def q(x,y):

Lo return [x+3, y+4]

In : q(2,3) # Call function q()
Out: [5, 7] # list

52/131

| Gerealiimy Gyt Uit B e St (e G 100 0 Wit Gabures (g Fu: G085 B
E.g.) Anonymous Functions

A function returns a squared value.
lambda defines an anonymous function after it.

In : square = lambda x: x**2
square (8)
Out: 64

A lambda can take more than one arguments.

In : expo = lambda x,y: x**y
expo (3,2)
Qut: 9

Note: A lamda can generate only a single return.
You cannot do like below:

In : twosums = lambda x,y: x+3,y+4

Traceback (most recent call last):

File "<ipython-input-150-ecfddafle31d>", line 1, in <module>
twosums = lambda x,y: x+3,y+4

NameError: name ’y’ is not defined

53/131

| Cares e et lss e e Smem b Cants) e 0 im0 LY
Modules & Packages

® \We saw some conveniences of functions. However, once you
shut down the interpreter, the definitions you have made
(functions and variable) are lost.

® As the scale of your research project gets larger, your program
gets longer.
® Shorten your program & maintain your codes easily by:
® Splitting your program into several files
® Storing a specific function that you use repetitively

® Module: a single python code file containing Python
definitions and statements that can be imported into other
programs.

® Package: a collection of Python modules.

E.g.) NumPy, Pandas, SciPy, Scikit-learn, NLTK, etc.

54 /131

| Cares e et lss e e Smem b Cants) e 0 im0 LY
Import Modules & Packages

There are many publicly-available modules and packages.

E.g. 1) "math” module

Import "math” module and set its name as "ma”

In : import math as ma

Call the function inside ma which calculates square root
In : ma.sqrt(2)

Out: 1.4142135623730951

Need to specify the imported module ma before sqrt.

In : sqrt(2)
Traceback (most recent call last):
File "<ipython—input—3—66e338417901>", line 1, in <module>
sqrt(2)
NameError: name 'sqrt’' is not defined

Or, import only the function "sqrt” from the module "math”
In : from math import sqrt

In : sqrt(2)

Out: 1.4142135623730951

E.g. 2) The module of miscellaneous operating system interfaces
In : import os

...: os.getcwd() # Current directory

Out: 'C:\\ Users\\masah\\Dropbox\\Masahiro’

Change directory

In : os.chdir(r"C:\ Users\masah\Dropbox\Masahiro")

In : os.getcwd () # Verify the change

Out: ’'C:\\ Users\\masah\\Dropbox\\Masahiro"’

55/131

Import Your Own Module

Create the module "fourelements.py”, imported in the main program
Recall: Module name = File name

def g(e,c,o,n):

""" Multiplications:
Multiply 4 inputs

d = excxoxn
return d

def f(e,c,o,n):
"""Subtractions
d = e—c—o—n
return d

The main program, containing the same name function:

import fourelements
def g(e,c,0,n):
d = etctotn
return d

In : g(1,2,3,4)

Out: 10

In : fourelements.g(1,2,3,4)
Out: 24

In : help(fourelements.g)

Help on function g in module fourelements:

g(e, ¢, o, n)
Multiplications:
Multiply 4 inputs 56 /131

Install/Update/Remove Packages
® MacOS: Open up the Terminal

Windows: Open up Anaconda Powershell or Command Prompt
Type each command.

® Install packages
® A single package: conda install package-name

® A package with a specific version:
conda install ¢‘package-name=version’’

® Update packages
® A single package: conda update package-name
® Multiple packages:
conda update package-name-1 package-name-2
® All packages: conda update --all

® Remove packages

® A single package: conda remove package-name
® Multiple packages:

conda remove package-name-1 package-name-2
® All packages: conda remove --all

Note. pip install package-name instead of conda can also work

In :

NumPy

Excellent package for scientific computation:

® Fast N-dimensional array (ndarray) processing.
® Sophisticated mathematical functions.

Many scientific packages are also built on NumPy.
Widely used in academia and industries.

NumPy official documentation

Helpful cheatsheets for Matlab or Julia users:
Matlab/Juliac>Python; Matlabe>Numpy

Import NumPy first:

import numpy as np

58 /131

https://numpy.org/
https://cheatsheets.quantecon.org/
http://mathesaurus.sourceforge.net/matlab-numpy.html

NumPy Arrays — Types

Create an array with four =zeros

In

Out:

In

Out:

zeros = np.zeros (4)
zeros
array ([0., 0., 0., 0.1)

type (zeros [0])
numpy .float64

Create an array with four ones (integers)

In

Out:

In

Out:

ones = np.ones (4, dtype=int)
ones
array ([1, 1, 1, 1])

type (ones [0])
numpy .int32

Create an array with two ones (boolean)

In

Out:

In

Out:

boolones = np.ones(2, dtype=bool)
boolones
array ([True, Truel)

type (boolones [0])
numpy .bool_
59 /131

| Cares e et lss e e Smem b Cants) e 0 im0 LY
NumPy Arrays vs. Lists

o Similarities:
® Storing data.
® Mutability.
® Can be indexed and sliced.

e Differences:
® Can implement arithmetic easily with ndarrays.

Easy to transform between lists and ndarrays
In : list_eg = [1,2,3,4]

In : ndarray_eg = np.array(list_eg)

In : ndarray_eg

Out: array([1, 2, 3, 41)

In : ndarray_eg.tolist ()

Qut: [1, 2, 3, 4]

In : ndarray_eg/2
Qut: array([0.5, 1. , 1.5, 2. 1)
In : list_eg/2 # Cannot implement arithmetics with lists

TypeError: unsupported operand type(s) for /: ’list’ and ’int’
60 /131

__ Course Intro_Python Intro_Data Types_Storage_Flow Control_Functions _Module & Packages _Floating Point_OOP_HW _
NumPy Arrays — Shape & Dimension

In : zeros = np.zeros(4) # a flat array with no dimension
zeros .shape
Out: (4,)
In : zeros.shape = (2,2) # convert into a two-dimensional array
zeros
Out:
array ([[0., 0.],
0., 0.1
In : zeros.shape

Out: (2, 2)

In : zeros = np.zeros((4,1)) # 4 x 1 array
...: zeros
Out:
array ([[0.],
[0.1,
[0.1,
[0.11)

61/131

| Cares e et lss e e Smem b Cants) e 0 im0 LY
NumPy Arrays — Creating Arrays

In : empty = np.empty(5) # Create an empty array

. empty

Out: array([0. , 0.25, 0.5 , 0.75, 1.])

Garbage values: Helps when we do not need explicit initialization of arrays
(Fast to create garbage values than np.zeros or np.ones)

Create a grid of evenly spaced numbers

In : grid = np.linspace(2, 9, 3) # an array from 2 to 9 with 3 elements
grid

Out: array ([2. , 5.5, 9.])

Create a grid of evenly spaced values with a specific interval size.
In : grid = np.arange(1,2,0.1) #[1,2) with 0.1 steps.

. grid
Out: array([1. , 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9])
Create an identity array
In : identity = np.identity(3)
. identity
Out:
array ([[1., 0., 0.],
[o., 1., 0.],
[0., 0., 1.]])
Create an array with integers
In : intarray = np.array([[10,2], [7,4]], dtype = int)
. intarray
Out:

array ([[10,
[7

AN
=

62/131

In

Out:

In

In

Out;

In

Out:

In

Out:

In

Out:

In

Out:
array ([[1,
[4,

In

Out:

In

Out:

In

Out:

Out;

NumPy Arrays — Indexing

a = np.array ([1,3,4])
a[0] # index starts at zero!

a[—1] # index starts at —1 backwards.
4

a[0:2] # extract an array from index 0 to 1.
array ([1, 3])

b = np.array ([[1,3].14,5]])

b[0,0] # extract an array with position (0,0).
1

b[:,1] # extract all columns with index 1.
array ([3, 5])

b[1,:] # extract all rows with index 1
array ([4, 5])

b[:] # extract all rows and columns

3],

511)

¢ = np.linspace(5,25,5)

c[a] # extract elements with index [1,3,4].
array ([10., 20., 25.])

d = np.array([1, 1, 0, 0, 1], dtype = bool)

c[d] # extract elements by a boolean array.
array ([5., 10., 25.])

e = np.array([4,5,3,0])

e.nonzero() # returns indexes of non—zero values
(array ([0, 1, 2], dtype=int64),)

63/131

In

Out:
In
Out:
In :
Out:
In

Out:
In
Out:
In
Out:
In

Out:
In

Out;

NumPy Arrays — Methods

econ = np.array ([10, 4, 2, 1])
econ.sort ()

econ

array ([1, 2, 4, 10])

econ.sum() # Sum over the elements

17

econ.max () # The maximum element

10

econ.argmax() # The index of the maximum element (10)
3

econ.mean () # Mean over elements

4.25

Cumulative sums
, 7, 17], dtype=int32)
) # Cumulative products

econ .cumsum ()
array ([1, 3
econ . cumprod (

2

array ([1, 8, 80], dtype=int32)
econ.var () # Variance
12.1875

Methods handling missing data

In
Out:
In
Out:

In
Out:

nanecon = np.array([10, 4, 2, 1, np.nan])
nanecon .sum()

nan

np.nansum(nanecon)

17.0

np.nanmax(nanecon)

10.0

64 /131

| Cares e et lss e e Smem b Cants) e 0 im0 LY
Basic Operations on Arrays — Basic Math

In a = np.array([4,3,2,1])
b = np.array([1,2,3,4])
...: a4+ b # Add element by element
Out: array([5, 5, 5, 5])
In : a x b # Product element by element

Out: array([4, 6, 6, 4])

In : a+ 2 # Add 2 to each element
Out: array([6, 5, 4, 3])

In : a % 2 # Multiply each element by 2
Out: array([8, 6, 4, 2])

Two—dimensional arrays
In : ¢ =np.array ([[1,2],[2,1]])
:d =np.array ([[3,4].[4,3]])

c+d

Out:
array ([[4, 6],

[6. 4]])
In : c+ 2
Out:
array ([[3, 4],

[4. 31])
In : ¢ / d # Element—wise division

Out:
array ([[0.33333333, 0.5 1.
[0.5 0.33333333]])

Multiplication is more complicated! —> next slide

65/131

__ Course Intro_Python Intro_Data Types_Storage_Flow Control_Functions _Module & Packages _Floating Point_OOP_HW _
Basic Operations on Arrays — Matrix Multiplication

In : a = np.array ([[1, 2], [3., 4]])
...t b =mnp.array ([[1, 2], [1, 2]])
In : a @b # Matrix multiplication (a%xb in Matlab)
Out:
array ([[3, 6],

[7. 14]])
In : np.dot(a,b) # Another way of matrix multiplication (axb in Matlab)
Out:
array ([[3, 6],

[7. 14]])
In a *x b # Element—wise multiplication (a.*b in Matlab)
Out: # np.multiply(a, b) also gives the same
array ([[1, 4],

[3. 8l
In : ¢ = np.array ([[0.6], [0.8]])

d = np.array([1,2])

.. e = np.array ([[1].,[2]])
In c xd # Matrix multiplication (cxd in Matlab). NOT ¢ @ d here!!!
Out:
array ([[0.6, 1.2],

[0.8, 1.6]])
In : ¢ % e #: Again, element—wise multiplication (c.xe in Matlab)
Out:
array ([[0.6],

(1.6]])

3 ways to generate a column vector: c¢=[0.6; 0.8] in Matlab
In : c.1, c.2 =0.6, 0.8
...: c_matl = np.array([c.1, c.2]).reshape(2,1)
c_mat2 np.array ([c.1, c.2]).reshape(—1,1)
...: c.mat3 = np.array ([[c-1], [c-2]]) # check if all these are the same.
Tuple is also treated as an column vector.
In : a @ (0,1)
Out: array([2, 4])

66 /131

__ Course Intro_Python Intro_Data Types_Storage_Flow Control_Functions _Module & Packages _Floating Point_OOP_HW _
Basic Operations on Arrays — Mutability

In : j = np.array([1,2,3,4])
.: j[0] = 10 # Change the element

R
Qut: array([10, 2, 3, 41)

In : j = np.array([1,2,3,4])

k=3
k[0] = 10
cee]
Qut: array([10, 2, 3, 41)
Changing the element in k = changing the same element in j !!!

How to prevent j from reflecting a change in k above?
In : j = np.array([1,2,3,4])
k = np.copy(j)
k[0] = 10
et]
OQut: array([1, 2, 3, 41)
No change in j

67 /131

__ Course Intro_Python Intro_Data Types Storage Flow Control Functions Floating Point OOP HW _
Pandas

® Excellent packages for data analysis and manipulation.

® Pandas can handle many data file format including stata, csv,
excel, sql, etc.

® Pandas is built on NumPy and designed for manipulation,
missing data, queries, splitting and so on.

e Come back later again with more detail in the data
management & visualization section.

® Pandas official documentation

Helpful cheatsheets for Stata users:
Stata<>Python; Stata<>Pandas

® |mport Pandas first:

In : import pandas as pd

68/131

https://pandas.pydata.org/
http://www.danielmsullivan.com/pages/tutorial_stata_to_python.html
https://cheatsheets.quantecon.org/stats-cheatsheet.html

__ Course Intro_Python Intro_Data Types Storage Flow Control Functions Floating Point OOP HW _
Series & Dataframe

e Two data structures in Pandas:

® Series: a one-dimensional labeled array that is able to
hold any data type.
¢ Dataframe: a two-dimensional data structure.

69/131

| Gerealimg [y Uit B St (i e Mol 0 0 e ey Fu: G055
Basic Operations: Series — Indexing

E.g.) Series

In : import pandas as pd
series = pd.Series([1,3,10],index=[’rowl’,’row2’,’row3’])
series

Out:

rowl 1

row2 3

row3 10

dtype: int64

Extract elements by indexes

In : series.index

Out: Index([’rowl’, ’row2’, ’row3’], dtype=’object’)

In : series[’row2’] # get the element with index name ’row2’
Out: 3

In : series.loc[’row2’] # get the element with index name ’row2’
Out: 3

In : series[0] # get the element with index 0

Out: 1
In : series.iloc[1] # get the element with index 1
Out: 3

70/131

| Gerealimg [y Uit B St (i e Mol 0 0 e ey Fu: G055
Basic Operations: Series — Slicing

How to slice series by indexes
The end label is included when you use .loc().

In : series.loc[[’rowl’,’row2’]]
Out:

rowl 1

row2 3

dtype: inté64

In : series.loc[’rowl’:’row3’]
Out:

rowl 1

row?2 3

row3 10

dtype: inté64

The end label is not included when you use .iloc ().

In : series.iloc[0:2]
Out:

rowl 1

row2 3

dtype: inté64

71/131

Basic Operations: Series — Querying & Boolean Filtering

Slice series with specified conditions.
Return the row(s) satisfied with a bracketed condition.

In : series[series>3]
Out:
row3 10

dtype: inté64

Return the boolean series indicating)\
if a condition following an equal is satisfied.
In : bseries = series >3
bseries
Out:
rowl False
row2 False
rowd True
dtype: bool

Return the row(s) satisfied with True value.

In : series[bseries]
Out:
row3 10

dtype: inté64

72/131

Basic Operations: Series — Conversion
— Series.items()

Find out the data type
In : series.dtype
OQut: dtype(’int64’)

Convert data type into strings

In : series_str = series.astype(’str’)
series_str.dtype

Out: dtype(’0’)

See the conversion from int to string.
In : series_str.iloc[1]
Out: ’3°

Iteration: series.items ()

Series.item() generates a tuple (index, value)

whenever a series is iterated.

In : for index, value in series.items():

L. print ("{}:{} + 10 = {}".format(index, value, value + 10))
rowl:1 + 10 = 11

row2:3 + 10 = 13

row3:10 + 10 = 20

73/131

__ Course Intro_Python Intro_Data Types_Storage_Flow Control_Functions _Module & Packages _Floating Point_OOP_HW _
Basic Operations: Series — Apply Functions

Apply functions
In : def f(x):
: return x+5
series.apply (f)

Out:

rowl 6
row2 8
row3 15

dtype: int64
In : series.apply(lambda y:y - 5)

Out:

rowl -4
row?2 -2
row3 5

dtype: inté64
The index label is gone when you use the map function!
In : result = pd.Series(map(lambda y:y - 5, series))

result
OQut:
0 -4
1 -2
2 5

dtype: int64
74 /131

Basic Operations: Series — Concatenation

Suppose that we'd like to add the below series.
In : add = pd.Series([10,3,10],index=["rowl’, 'row2', 'row3'])

add
Out:
rowl 10
row2 3
row3 10

dtype: int64

Append "add” to "series’”

In : combine = series.append(add)
combine

Out:

rowl 1

row2 3

row3 10

rowl 10

row2 3

row3 10

dtype: int64

Return the series with index label ’'rowl'

In : combine.loc[rowl’]

Out:

rowl 1

rowl 10

dtype: int64

In : combine[0]

Out: 1

75/131

Basic Operations: Series — Updating by Values and Indexes

Updating by values
In : series.replace([1,10],[5,9]1)

Out:

rowl 5
row?2 3
row3 9

dtype: inté64

Updating by indexes
In : series.update (add)

series
Out:
rowl 10
row?2 3
row3 10

dtype: inté64

76 /131

Basic Operations: DataFrame — Indexing

E.g.) DataFrame

In : df = pd.DataFrame([[1,2,3],[3,9,6].,[10,2,—6]],

columns= ['coll’, 'col2', 'col3'],
index=["rowl', 'row2', 'row3'])

df # Look at the difference between Series (1—dim) and DataFrame (2—dim)!

0-ut :

coll col2 «col3
rowl 1 2 3
row2 3 9 6
row3 10 2 —6
Extract elements by indexes
In : df.coll # Extract the column "coll”.
Out:
rowl 1
row2 3
row3 10

Name: coll, dtype: int64

In : df.iloc[0] # Extract the row with the index 0.
Out:

coll 1

col2 2

col3 3

Name: rowl, dtype: int64

In : df.iloc[[1,2]] # Extract the rows with the indexes 1 and 2.

Out:

coll col2 «col3
row2 3 9 6
row3 10 2 —6

77 /131

| Cares e et lss e e Smem b Cants) e 0 im0 LY
(Cont’d) Basic Operations: DataFrame — Indexing

Extract the element (1,2).
In : df.iloc[1,2]
Qut: 6
Extract the row with the index O.
In : df.iloc[0:1]
Out:
coll col2 col3
rowl 1 2 3
Extract the row and the column with the index O.
In : df.iloc[0:1,0:1]
Out:
coll
rowl 1
Extract the rows from the index "row2" to "row3".
In : df.loc[’row2’:’row3’]

OQut:
coll col2 col3
row2 3 9 6
row3 10 2 -6
Extract the element ("row3","col3").
In : df.col3.row3
Qut: -6
In : df[’col3’][’row3’]
Qut: -6

78/131

Basic Operations: DataFrame — Querying & Boolean Filtering

How to slice dataframe with specified conditions.
Return the dataframe with boolean indicating)\

if each element is satisfied with a condition.

In : df.coll >= 3

Out:

rowl False
row?2 True
row3 True

Name: coll, dtype: bool

Return the dataframe with elements)\
satisfied with a bracketed condition.
In : df[df.coll >= 3]

Out:

coll col2 col3
row2 3 9 6
row3 10 2 -6

Multiple conditions
In : df [(df.coll >=3) & (df.col2 >= 3)]
Out:
coll «col2 <col3
row2 3 9 6

79/131

Basic Operations: DataFrame — lteration

iteritems (): iterate over columns and each column is returned as a series.
In : for col, val in df.iteritems():

: if col = 'coll’:
print('The column is {} and the value is \n{}'.format(col, val))
The column is coll and the value is

rowl 1
row?2 3
row3 10
Name: coll, dtype: int64
iterrows (): iterate over rows and each row is returned as a (index, series) pair.
In : for row, val in df.iterrows():
if row = 'row2’

print('The row is {} and the value is \n{} .format(row, val))
The row is row2 and the value is

coll 3
col2 9
col3 6

Name: row2, dtype: int64

itertuples(): iterate over rows and each row is returned as a named tuple.
In : for tup in df.itertuples():

print(tup)

Pandas(Index="rowl', coll=1, col2=2, col3=3)

Pandas(Index="row2', coll=3, col2=9, col3=6)

Pandas(Index="row3', coll=10, col2=2, col3=—6)

| Cares e et lss e e Smem b Cants) e 0 im0 LY
Basic Operations: DataFrame — Apply function

Apply sum over rows (axis = 0)
In df .apply (sum, axis = 0)
Out:
coll 14
col2 13
col3 3
dtype: inté64
Apply sum over columns (axis = 1)
In df .apply (sum, axis = 1)
Out:
rowl 6
row2 18
row3 6
dtype: int64
Apply an anonymous function to each element.
In df . applymap (lambda x:x*2)
Out:
coll col2 col3
rowl 2 4 6
row2 6 18 12
row3 20 4 -12

81/131

Basic Operations: DataFrame — Updating by Methods
In : df.applymap(lambda x:x*2)

Out:

coll col2 col3
rowl 2 4 6
row2 6 18 12
row3 20 4 -12

In : df # The original df is not updated by the previous method
Out:
coll col2 col3

rowl 1 2 3
row2 3 9 6
row3 10 2 -6
In : df = df.apply(lambda x:x*2) # Update df by this
... df
Out:
coll «col2 <col3
rowl 2 4 6
row2 6 18 12
row3 20 4 -12

In : df[’coll’] = df.coll.apply(lambda x:x%*2)
... df # Update only columnl
Out:

coll col2 col3
rowl 4 4 6
row2 12 18 12

row3 40 4 -12

| Cares e et lss e e Smem b Cants) e 0 im0 LY
Basic Operations: DataFrame — Missing Data

Dataframe with missing values
pd.DataFrame ([[1,2,],[3, 6],[10,2,-6]1,

df =

If
In
Out:

rowl
row2
row3

If
In
Qut:

rowl
row?2
row3

columns= [’coll’, ’col2’, ’col3’],
index=[’rowl’,’row2’,’row3’])

a cell is nan, this returns True.
df .isna () # or, df.isnull ()
coll col2 col3
False False True
False False True
False False False
a cell is not mnan, this returns True.

df .notna ()

coll
True
True
True

col2
True
True
True

col3
False
False
True

83/131

Basic Operations: DataFrame — Joining Data

Random dataframes

dfl pd.DataFrame([[1,2,3],[3,9,6],[10,2,—6]],
columns= ['coll’, "col2', "col3'],
index=["rowl’, 'row2', 'row3'])

df2 pd.DataFrame([[3,9,6],[1,2,3],[10,2,—6]],
columns= ['coll’, "col2', "col3'],
index=["rowl’, 'row2', 'row3'])

Join two dataframes using index

In : dfl.join(df2, rsuffix = '_2') # the names of columns in df2 are appended to '_2'.
Out:
coll col2 col3 coll_.2 <col2.2 col3.2
rowl 1 2 3 3 9 6
row2 3 9 6 1 2 3
row3 10 2 —6 10 2 —6
Join two dataframes using index
In : dfl.join(df2, Isuffix = '_1') # the names of columns in dfl are appended to '_1'.
Out:
coll_1 col2_.1 col3.1 coll col2 col3
rowl 1 2 3 3 9 6
row2 3 9 6 1 2 3
row3 10 2 —6 10 2 —6

Basic Operations: DataFrame — Merging Data

Random dataframes

df3 = pd.DataFrame([[1,2,3],[3,9,6],[10,2,—6]], columns= ['coll_1"', 'col2', 'col3_1'],
index=['rowl’, 'row2"', 'row3'])

df4 = pd.DataFrame([[3,9,6],[1,2,3],[10,2,—6]], columns= ['coll_2", 'col2’, 'col3.2"],
index=['rowl’, 'row2', 'row3'])

Merge two dataframes using index
In : df3.merge(df4, left_index=True, right_index=True)

Out:

coll_.1 col2_x col3.1 coll.2 <col2.y <col3.2
rowl 1 2 3 3 9 6
row2 3 9 6 1 2 3
row3 10 2 —6 10 2 —6

Merge two dataframes on a common column ('col2’)
In : df3.merge(df4, on "col2') # Note: merge many to many by default

Out:

coll_1 col2 col3.1 coll_.2 col3.2
0 1 2 3 1 3
1 1 2 3 10 —6
2 10 2 —6 1 3
3 10 2 —6 10 —6
4 3 9 6 3 6
Merge two dataframes on different columns
In : df3.merge(df4, left.on = 'coll_1', right_on = 'coll.2")
Out:

coll-1 col2_.x «col3.1 «coll.2 «col2_.y col3.2
0 1 2 3 1 2 3
1 3 9 6 3 9 6
2 10 2 —6 10 2 —6

Basic Operations: DataFrame — "Validate” option

Use "validate” so that you can find if you have duplicate IDs!
In : df3.merge(df4, on = 'col2’', validate = "one_to_many"”)
MergeError: Merge keys are not unique in left dataset; not a one—to—many merge

pandas.DataFrame.merge official documentation

We will come back to merging with more detail again in the data management &

visualization section.

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.merge.html

| Gerealimg [y Uit B St (i e Mol 0 0 e ey Fu: G055
Regular Expressions

® \We learnt that Python can handle string data.

® You may want to...

® find all email addresses in a document.

® extract latitude and longitude values from (latitude,
longitude).

® find if a specific string exists in another string.

® The Python module “re” enables you to work with regular
expressions.

® \We cover basic operations here. See
Regular Expression Operations for more detail.

e Also, we will come back to this topic again in the text-mining
section for research applications later.

87 /131

https://docs.python.org/2/library/re.html

__ Course Intro_Python Intro_Data Types Storage Flow Control Functions Floating Point OOP HW _
Module: re — Search & Match

Importing re module
import re

Search
span = (n, m): the position of a matched character
In : re.search(’@’, ’masahiro_kubo@brown.edu’)

Out: <re.Match object; span=(13, 14), match=’0’>

Match

cannot find if a character is in between two letters.

In : re.match(’@’, ’masahiro_kubo@brown.edu’) #returns nothing
In : re.match(’@’, ’@brown.edu’)

OQut: <re.Match object; span=(0, 1), match=’@’>

Using special characters to extract information you need.

. : any character
* : any number of characters
In : re.match(’.*@’, ’masahiro_kubo@brown.edu’)

Out: <re.Match object; span=(0, 14), match=’masahiro_kubo@’>

88/131

__ Course Intro_Python Intro_Data Types_Storage_Flow Control_Functions _Module & Packages _Floating Point_OOP_HW _
Module: re — Findall, Split, and Sub

Find all

In : re.findall(’s’, ’Brown University Economics?’)
Out: [’s’, ’s’]
In : re.findall(’s.’, ’Brown University Economics’)

Out: [’si’]

Extract characters starting with ’s’

. : any character
7 : match zero or one occurences
In : re.findall(’s.?’, ’Brown University Economics?’)

Qut: [’si’, ’s’]

Split a string by ’University’
In : re.split(’University’, ’Brown University Economics’)
Out: [’Brown ’, ’ Economics’]

Replace ’n’ by ’7’

re.sub(’n’, ’?’, ’Brown University Economics’)
Out: ’Brow? U?7iversity Eco?omics’

89/131

| Cares e et lss e e Smem b Cants) e 0 im0 LY
E.g.) Extracting Latitude and Longitude

Random latitude and longitude information list

lat_lon = ["1lat:35.689722, lon:139.692222",\
"lat:51.507222, lon:-0.1275",\
"lat:41.823611, lon:-71.422222"]

Create a list containing latitude information

\d : a number

\. : the decimal point

In : lat = [re.findall(’\d*\.\d*’, i)[0] for i im lat_lon]
lat

Out: [’35.689722°, °51.507222°, ’41.823611°]

Exercises:

Q. Extract longitudes.

Q. Transform the obtained list into the list consisting of numbers,
not strings (so that ArcGIS can understand them as geographic
coordinates).

90/131

Other Useful Pakcages for Economists
SciPy: an open-source library for mathematics, science, and
engineering

® Used often in sections for numerical methods later
e E.g.) integration, equation-solving, optimization

Scikit-learn: an open-source library for regressions and
machine learning algorithms

® Built on NumPy, Pandas, and SciPy
® Partly covered in sections for research applications

Natural Language Toolkit (NLTK): a leading platform for
working with human language data

® Much more functions than the regular expression module
that we saw
® Used intensively in the text-mining section later

Check out many other available packages depending on your
various purposes!

Floating Point Arithmetic

Floating Point Arithmetic

e Most computing languages (not specific to Python) use
floating points to represent wide range of values with their

finite capacities.

* Floating-point numbers are not necessarily equal to their
true values!

93/131

| Gerealiig Gyt Uit B e St (i Gt (Mo Weitrs S Gabnes |1 0 G0 WY
Floating Point Arithmetic

e Most computing languages (not specific to Python) use
floating points to represent wide range of values with their
finite capacities.

* Floating-point numbers are not necessarily equal to their
true values!

Recall your assignment 0:

1.0 x 3 = 37
In : 1.0%3 ==
Qut: True

0.1 x 3 = 0.37

In : .1%3 == .3
Out: False
In : .1%3

Out: 0.30000000000000004

What is a floating-point number displayed as 0.17
Display "0.1" with 18 significant digits
In : format (0.1, ’.18g’)

Qut: ’0.100000000000000006°
94/131

Floating-Point Numbers # True Decimal Values

e E.g.) 0.125 as the decimal fraction (base 10) and 0.001 as the
binary fraction (base 2) have the identical values:
e 0.125 = % + 1000 Decimal fraction

1
® 0.001 = % % + g Binary fraction.

95 /131

Floating-Point Numbers # True Decimal Values

e E.g.) 0.125 as the decimal fraction (base 10) and 0.001 as the
binary fraction (base 2) have the identical values:

e (0.125 = % + 1000 Decimal fraction

1
® 0.001 = % % + g Binary fraction.

® Decimal fractions you enter are only approximated by their
corresponding binary fractions stored in a machine.

® The decimal value 0.1 cannot be represented exactly as a
base 2 fraction.

® In base 2, 0.1 is the infinitely repeating fraction:
0.000110011001100110011...
(=0/2' +0/22+0/23 +1/24 +1/25 +....)

96/131

Floating-Point Numbers # True Decimal Values

e E.g.) 0.125 as the decimal fraction (base 10) and 0.001 as the
binary fraction (base 2) have the identical values:

e (0.125 = % + 1000 Decimal fraction

1
® 0.001 = % % + g Binary fraction.

® Decimal fractions you enter are only approximated by their
corresponding binary fractions stored in a machine.

® The decimal value 0.1 cannot be represented exactly as a
base 2 fraction.

® In base 2, 0.1 is the infinitely repeating fraction:
0.000110011001100110011...
(=0/2' +0/22+0/23 +1/24 +1/25 +....)

® On the other hand, for integers, Python does not distinguish,
for example, between 3.00 and 3.

97 /131

More in Details

® Most machines use IEEE-754 floating point arithmetic, and
almost all platforms map Python floats to IEEE-754 “double
precision”.

® Most floating numbers are normalized in this way:
x==+(1+f)-2V.

® A double-precision float consists of a total of 64 bits:

® 1 bit for the sign of the number (%) ,
® 11 bits for the exponent (N), and
® 52 bits for the fraction/mantissa (f).

Limitations

e Of course, floating point cannot represent all numbers.

® fmustsatisfy0 < f <1

® 252. f must be an integer in the interval:
0<2%2.f <25,

® N must be an integer in the interval:
-1022 < N < 1023.

® |n an absolute sense, there are the upper bound and lower
bound of the values which floating point can represent.

® The larger values than the upper bound are said to be
inf orinfinity.
® The smaller values than the lower bound are 0.

E.g.) What is the floating number 0.17
Example: x = 0.1.

01=22.(1+f) -2
=22.(1+f)=27/10

Recalling 2°? - f is an integer containing 52 bits (53 bits including
plus 1) and 2°? < 2%6/10 < 253, then J = —56. Hence,

252 (1 + f)
= 22.(1+ f)-2/(=0.1)

7205759403792794.
7205759403792794 - 2756,

Let’s verify above.
In : 0.1 * (2 ** 56)
OQut : 7205759403792794.0 # 2**52x(1 + f)

® |If more interested in why the errors arise in detail, see:

® Floating Point Arithmetic: Issues and Limitations.
® Moler, Cleve. "Floating points.” eps 2.5 (1996): 52.

https://docs.python.org/3/tutorial/floatingpoint.html

_ Course Intro_Python Intro_Data Types Storage Flow Control Functions Module & Packages - = - OOP_HW _
Practical Issues

® Some practical issues for floating point math based on
Moler, Cleve. "Floating points.” eps 2.5 (1996): 52.

® Round-off error
® Matrix manipulation
® (Cancellation

101/131

__ Course Intro_Python Intro_Data Types _Storage Flow Control Functions Module & Packages _OOP HW_
Round-off Error

In x = np.arange(0.988, 1.012, .0001)
y = -(x-1)*x*2 + 4
x_max = x[y.argmax()] # Should be 1 mathematically.
x_max

Out: 0.9999999999999987

In : min(abs(x-1)) # Never hit 1 in x!
Out: 1.3322676295501878e-15

This round-off error will matter a lot in scientific computations,
especially in numerical differentiation!

102/131

| Cares e syt se e e Seam e Cants) (frsior WS deneme (0 0 000 LY
Matrix Manipulation

Singular equations:

0.1x+0.3y =1
x+3y=10

Matrix A below does not have an inverse, but...
In : A = np.array(([0.1, 0.3]1,[1 ,31))
np.linalg.inv(A) # Inverse of matrix A
Out :
array ([[1.08086391e+17, -1.08086391e+16],
[-3.60287970e+16, 3.60287970e+15]1])

This is because floating point numbers 0.1 and 0.3 are not exactly
equal to 0.1 and 0.3, respectively.

103 /131

_ Course Intro_Python Intro_Data Types Storage Flow Control Functions Module & Packages - = - OOP_HW _
Cancellation

® Repeated addition and subtraction for tiny numbers
can cause severe errors.

yl and y2 are the same function.

In : import numpy as np
.: import matplotlib.pyplot as plt
.t x = np.arange(0.988, 1.012, .0001)

ooyl X#kk7— THxkx6+ 21skx*xx5— 35% xkkd+ 35k x*kx3— 21skx**x24 Txx— 1
Doy2 (x — 1)*x7

What is the value of x with y nearly equal to 1?7 — Should be nearly 1
In : zerol = x[abs(yl).argmin ()]

...: zerol

Out: 0.9923999999999995 #A substantial discrepancy from 1!

In : zero2 = x[abs(y2).argmin ()]
...1 zero2
Out: 0.9999999999999987

Plotting these two reveals what happens.

104 /131

| Cares e syt se e e Seam e Cants) (frsior WS deneme (0 0 000 LY
(Cont’d) Cancellation

11111

‘)

)

I
x"“ ‘#.”‘“U lllln'l‘nlhl ‘““ '
"‘ !H“ '“ I '“” Il ‘H w"

‘V
I
|

|

105 /131

How to Judge If Two Values/Arrays are Sufficiently Close?

In : import numpy as np
import math
d = .1%3

Without any functions (1e—09 = 1x10%%(—9))
In @ if 0.3 —d < 1e—09:

print(70.3")

0.3
Use math.isclose(a, b, rel_tol , abs_tol)

abs(a—b) <= max(rel_tol x max(abs(a), abs(b)), abs_tol)
In : math.isclose(d, 0.3, rel_tol=1e—09, abs_tol=0.0)
Out: True

Use np.isclose(a, b, rtol , atol, equal_nan)

absolute(a — b) <= (atol + rtol % absolute(b))

equal_nan: Whether to compare NaN's as equal.

In : np.isclose ([d, 0.32], [0.3, 0.3], rtol=1e—05, atol=1e—08, equal_nan=False)
Out: array ([True, False])

Use np.allclose(a, b, rtol , atol, equal_nan)

Returns True if two arrays are element—wise equal within a tolerance.

absolute(a — b) <= (atol + rtol % absolute(b))

In : np.allclose ([d, 0.32], [0.3, 0.3], rtol=1le—05, atol=1e—08, equal_nan=False)
Out: False

Intro to Object Oriented Programming
(O0P)

| Cares e syt lss e e Smes e Cants) (o WSt deseres (mig e 00 W00
Programming Paradigms
Procedural: The program moves through instructions linearly

® Simple to write and easy to do line-by-line trial and error

108 /131

__ Course Intro_Python Intro_Data Types_Storage_Flow Control_Functions _Module & Packages _Floating Point_OOP_HW _
Programming Paradigms
Procedural: The program moves through instructions linearly
® Simple to write and easy to do line-by-line trial and error
Functional: The program moves from function to function

® Separating tasks into sub-functions make the code readable, scannable,
and maintainable

® By looking at the “main” function, easy to understand the entire
strucuture of the program

® FEasy to run a subset of the entire program

109 /131

__ Course Intro_Python Intro_Data Types_Storage_Flow Control_Functions _Module & Packages _Floating Point_OOP_HW _
Programming Paradigms
Procedural: The program moves through instructions linearly
® Simple to write and easy to do line-by-line trial and error
Functional: The program moves from function to function

® Separating tasks into sub-functions make the code readable, scannable,
and maintainable

® By looking at the “main” function, easy to understand the entire
strucuture of the program

® FEasy to run a subset of the entire program

Object Oriented Programming (OOP): a programming paradigm
which provides a means of structuring programs so that data and its
behaviors are bundled into an individual object (777)

110/131

| Gerealig Gyt Uit B e St (i G (Mo Wit & Gobures (eehg Gum: o0 B0
Object Oriented Programming (OOP): Overview

Object Oriented Programming (OOP): a programming paradigm which
provides a means of structuring programs so that data and its behaviors are
bundled into an individual object

® Variables, functions, or both are grouped together in such a way that all
the included objects “see” each other and can interact intimately

® Recognized as the almost unique successful paradigm for complex software
® Python is an object-oriented language (Documentation)

® See Software Carpentry lectures for more detail

Advantages:
® Object types can be generalized by using classes, simplifying our program

® One class can be used to create many objects, including variables and
methods (functions), all from the same flexible piece of code

® Maintainability: A class can inherit attributes and behaviors from another
class, allowing us to define common behaviors once in one place and
override just those definitions that want to be changed

= Particularly beneficial for larger scale programs 111 /131

https://docs.python.org/3/tutorial/classes.html
https://v4.software-carpentry.org/oop/

__ Course Intro_Python Intro_Data Types_Storage_Flow Control_Functions _Module & Packages _Floating Point_OOP_HW _
Objects

® In Python, everything in memory is an object.
® Everything includes lists, functions, modules, etc.

® An object consists of four elements:

® Type: string, list, number, boolean, etc
® |dentity

® Data and Attributes

® Methods

112/131

Identity

A unique identifier is assigned to each object, so that Python can
keep track of each object.
All ([], True, and a) are objects.

In: id ([])
Out: 2809772609352

In: id(True)
Out: 140736572856656
In: a =4

¢ id(a)

Out: 140736573379488

113/131

__ Course Intro_Python Intro_Data Types Storage Flow Control Functions Module & Packages Floating Point = HW _
Data and Attributes

e Data is contained in some type of an object (e.g. int, boolean,
float).
® An object contains attributes.

® An attribute name is obtained by typing a dot after an object

name.
In : econ = 1 # econ is an object.
...: econ.imag # An attribute by which you can get imaginary part.
Out: 0
In : univ = "Brown”
...t univ.__class__ # An attribute by which you can know what type is.
Out: str

114 /131

Methods

® Methods are functions and callable attributes that are bundled
with objects.

® Using callable() enables you to identify if something is
callable or not.

In : univ = "Brown”

...: callable(univ.count) # This is a callable attribute.
Out: True

"count” method enables you to count how many times "B’
In : univ.count("B")

Out: 1

" appears in the object.

® |ike the example above, if you define another object with string
type, it has the same bundled attributes and methods
(functions)!

e Again, we can know an outcome/data behavior through an
object, which makes programs easier to be understood.

115/131

__ Course Intro_Python Intro_Data Types Storage Flow Control Functions Module & Packages Floating Point = HW _
Classes

® OK, but how can we create multiple methods (functions) and
attributes that you want bundled into an object?

® (lasses are user-defined molds in which you can define multiple
methods and attributes.

116 /131

| Gerealig Gyt Uit B e St (i G (Mo Wit & Gobures (eehg Gum: o0 B0
E.g.) Classes

class Person: # define a class

def __init__(self, name, age): #define an initial method
self.name = name # add name attribute
self.age = age # add age attribute

def cohort(self, eventyear): #define "birth cohort” method

self.birth = eventyear — self.age

Instantiate object
ken = Person("Ken”, 32)

In : ken.name
Out : Ken

In : ken.age
Out: 32

Use "birth cohort” method and pass "eventyear” instance variable

In : ken.cohort(2019)

. ken. birth

Out: 1987

Each instance stores data in dictionary.

In : ken.__dict__

Out: {'name’: 'Ken', 'age': 32, 'birth': 1987}

117 /131

| Gerealig Gyt Uit B e St (i G (Mo Wit & Gobures (eehg Gum: o0 B0
E.g.) Class Method

e So far, we use methods (e.g. “birth cohort” method) which
require an instance (e.g. "eventyear”) in order to call it
(instance method).

® Below we use a class method that belongs to the class as a
whole (class method)

class US:
def init__(self, state): # instance method

self.state = state

def country(cls): #class method
return "US"

In : RI = US("Rhode Island") # instance: "Rhode Island"
...: RI.state
Out: Rhode Island

In : RI.country()
Out: US

118 /131

Inheritance

® You may want to define a new class by modifying methods in a
class that you have already defined.

® A new class can inherit methods from a class that you have
already defined.

® Newly formed classes are called child classes, and the classes
that child classes are derived from are called parent classes.

(child class = subclass = derived class)

119/131

| Gerealig Gyt Uit B e St (i G (Mo Wit & Gobures (eehg Gum: o0 B0
E.g.) Inheritance

Parent class
class country:
def __init__(self, name):
self .name = name

Child class
class adminl (country): # inheritance
pass # empty class besides the above method (inheritance)

US = country("US")
RI = adminl ("Rhode Island")

In : US.name
Out: US
In : RI.name

Out: Rhode Island

120/131

Import a Class as Your Own Module

Create the module "class_.imported.py”, imported in the main program
Recall: Module name = File name

class Person:
def __init__(self, name, age): #define an initial method
self .name = name # add name attribute
self.age = age # add age attribute

def cohort(self, eventyear): #define "birth cohort” method
self.birth = eventyear — self.age

The main program: "class_call.py”
import class_.imported #Import class_imported .py

#instantiate object in class that we have imported
ken = class_imported.Person("Ken”, 32)
ken.cohort (2019)

Inheritance from "Person” class in class_imported.py
class Person_inherited (class_.imported.Person):
pass
masa = Person_inherited("Masa", 29)
masa.cohort (2019)

In : ken.age
Out: 32

In : masa.birth
Out: 1990

121/131

__ Course Intro_Python Intro_Data Types_Storage Flow Control _Functions_Module & Packages_Floating Point 00" HW _
E.g.) Market Supply & Demand

301
-
-
-
-
-
251 -
-
-
-
-
-
-
-
-
-
-
-
-
/,/
20 -,
-
-
-
-
[} -
-
O <
= e
-
o -
-
15 s
-
-
-
-
-
-
-
-
-
-
-
-
-
4 -
10 .
-
-
-
-
-
-
-
-7 demand: Q =aq — bgP
-
- O =
54 - supply: Q = as + bs(P —t)
-
- ——— supply without tax

o 2 4 6 8 10 12214131

__ Course Intro_Python Intro_Data Types_Storage Flow Control _Functions_Module & Packages_Floating Point 00" HW _
E.g.) Market Supply & Demand

class Market:
def __init__(self, a.d, b.d, a.s, b.s, tax):

Set up market parameters. All parameters are scalars

self.a.d, self.b.d, self.a_s, self.b_.s, self.tax = a.d, b_.d, a.s, b_s, tax
if a.d < a_s:
raise ValueError('Insufficient demand’)
def price(self):
"Compute equibrium price”
return (self.a.d — self.a.s + self.b_sxself.tax) / (self.b.d 4+ self.b_s)
def quantity(self):
"Compute equibrium quantity”
return self.a.d — self.b_dxself.price()
def cs(self):
"Compute consumer surplus”
integrand = lambda x: (self.a.d/self.b.d) — (x/self.b.d)
area, error = quad(integrand, 0, self.quantity())
return area — self.price()*self.quantity()
def ps(self):
"Compute producer surplus”
integrand = lambda x: —(self.a_s/self.b_s) + (x/self.b_s)
area, error = quad(integrand, 0, self.quantity())
return (self.price() — self.tax)*xself.quantity() — area
def taxrev(self):
"Compute tax revenue”
return self. tax*self.quantity()
def inv_demand(self x):
return (self.a_d/self.b.d) — (x/self.b.d)
def inv_supply(self x):
return —(self.a_s/self.b.s) + (x/self.b_s) + self.tax

123 /131

In-Class Exercise
for Object-Oriented Programming

Task.

In-Class Exercise (OOP)

Define the class for the Malthusian model that you learnt.

Population dynamics:

Lia =3 (AX)7 L

Income dynamics:

p a
Visl = [—] v
y

where
® [, : labor employed in period t.
® X : land.
® A : technological level.
® AX : effective resources.
® y, : income per worker produced at time 7 (= {—’t)
® « : effective resources’ share of output.
® vy : share of expenditure on children to income per worker.
® o : cost of raising a child.

125 /131

| Cares e syt lss e e Smes e Cants) (o WSt deseres (mig e 00 W00
(Cont’d) In-Class Exercise (OOP)

1. Define the method to derive dynamics of population and
income per worker.

2. Define the method to derive population and income per worker
at the steady state.

3. Define the method to derive when economy reaches to the
steady state.

4. Derive the steady state values and the period when economy
reaches to the steady state with above methods and the
following values.

® |nitial conditions: Lo =1, yg = V2 and AX =2
® Parameter values: @ = 0.5, v =0.3, and p = 0.6.

¢ A helpful example with the Solow model from (an older version
of) QuantEcon will be distributed.

126 /131

Assignment 1

1.

3.

[1] Python Basics

A= [1 ’2’ 3] & B = (IlECll’ |ICSII’ "AM").
Define a new list C like below by using A, B and list comprehension:

C

[lll_ECll , |l2_CSIl , IIS_AM"]

D

{1:"New York", 2:"Los Angeles", 3:"Chicago"}
Update D by adding E = {4:"Houston", 5:"Phoenix"}

pop = [8398748, 3990456, 2705994, 2325502, 1660272]
By using a loop, generate a dictionary

F = {1: ("New York", 8398748), 2: ("Los Angeles",
3990456), 3: ("Chicago", 2705994), 4: ("Houston",
2325502), 5: ("Phoenix", 1660272)}

128 /131

| Gerealiy [yt Uit B e St (i G (Mo Wit & Gabures (ehg G G0 (0
[1] Python Basics (Cont’d)

4. Let's find lim,_,o &=L 1

® Generate a grid Wlth the interval [-0.1,0.1) with 0.01 steps.

® Define the anonymous function in two ways.

@ numpy.exp(x)
@® numpy.expmi (x)

® Compare limy_,q efol between 1 & 2. Which one is better?

5. Find lim, . a, in two ways: (1) a loop and (2) a function.

® a;=0,a2=1, and
1
anp+l = 5 (an+ap-1) ifn > 2.

® Generate a random array (100 x 100) using np.random.rand(100,100).

® Find the nearest and the furthest value from the limit above and their
positions in the array.

129/131

https://docs.scipy.org/doc/numpy/reference/generated/numpy.expm1.html

[2] Matrix Manipulation

1. Write a function file separately to calculate an inverse of 2 x 2
matrix, which addresses the issue arising from floating-point
numbers that we have seen in the lecture.

2. By importing your function file, (try to) solve the two-by-two
set of linear equations: (1) and (2).

0.9x +4y =10
{x+3y:6 (1)

0.3x + 1.5y = 0.05 2)
5.4x + 27y =0.9

130/131

[3] Regular Expressions

® First, just write down the below information in your script:

MessyList = ["New York:(latitude:40.6635,
longitude:-73.9387)", "Los Angeles:(lat:34.0194,
longi:-118.4108)"", "Chicago: (latitude:41.8376,
longitude:-87.6818)", "Houston:(latitude:29.7866,
longitude:-95.3909)"]

® Extract latitude and longitude information from the messy list and create
a list like below.

list = [(cityl, latitudel, longitudel), (city2, latitude2,
longitude?2)]

® FExtract latitude and longitude information from the messy list and create
a dictionary in which each key can call both latitude and longitude
information like below:

dict = { cityl: (latitudel, longitudel), city2:
(latitude2, longitude2) }

131/131

	Course Intro
	Python Intro
	Data Types
	Storage
	Flow Control
	Functions
	Module & Packages
	Floating Point
	OOP
	HW

