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Abstract

Conserving tropical forests impacts the standard of living of local populations. More-
over, human adaptation through sectoral or spatial reallocation of economic activity may
undermine conservation policy goals. To derive policies that balance human and ecological
well-being, this paper estimates a multi-sector spatial model that formalizes human-nature
interactions using high-resolution georeferenced data from roadless river basins in the Pe-
ruvian Amazon. Identification comes from plausibly exogenous variation in the structure
of river networks. We find that the agglomeration externality in agricultural production
outweighs dispersion forces in access to land, implying that higher concentration leads to
higher productivity with less deforestation per farmer. We also find a strong congestion ex-
ternality with spatial spillovers in natural resource extraction. The estimated agglomeration
externality, primarily driven by economies of scale in transport technology and agricultural
intensification, generates large welfare and forest cover gains but leads to natural resource
depletion through general equilibrium effects. Counterfactuals demonstrate that combin-
ing well-targeted place-based protection policies and transport infrastructure can simultane-
ously achieve higher welfare, lower deforestation, and less natural resource depletion.
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1 Introduction

Conservation of tropical forests is a key element of global efforts to slow climate change and
preserve biodiversity (Malhi et al. 2008; Pimm et al. 2014). Meanwhile, many populations
in rainforest areas have low living standards and rely on forest and environmental income
sources (Angelsen et al. 2014). Policymakers face the inherent trade-off between conserving
the rainforest and improving the welfare of local populations. For example, increasing the
cost of forest clearing may reduce deforestation, but it may also reduce agricultural income
and thus undermine human welfare. Moreover, human adaptation through sectoral or spatial
reallocation of economic activity may undermine the goals of conservation. For example, if
the cost of forest clearing is increased, then local populations may shift from agriculture to
other extractive activities such as fishing and hunting, which could lead to biodiversity loss; if
a place-based protection policy prohibits resource extraction in one area, then local populations
may move from that area to others to extract resources, and the impact on overall resource
depletion is unclear. How can we design a policy that resolves these trade-offs?

To answer this question, it is necessary to consider general equilibrium forces in human-
nature interactions across space. Several recent studies in economics investigate the effective-
ness of policy interventions such as environmental conditional cash transfers, regulation and
taxes, and protected areas (e.g., Assunção et al. 2023; Hsiao 2022; Jayachandran et al. 2017; Sims
and Alix-Garcia 2017; Souza-Rodrigues 2019), as well as infrastructure projects (e.g., Asher et
al. 2020; Madhok 2022) on deforestation and biodiversity outcomes. However, most prior stud-
ies have not considered the general equilibrium contexts. Moreover, many previous studies of
tropical forests focus on the contexts of extensive commercial investments (e.g., logging, soy-
beans and cattle-ranching in the Brazilian Amazon, and palm oil plantations in Indonesia; see
Balboni et al. 2023 for a comprehensive review). It is not clear the degree to which findings
from these contexts can be generalized to less developed areas where deforestation and other
resource extractions are primarily practiced by local populations for their livelihood.

In this paper, we build a multi-sector quantitative spatial general equilibrium model that
features the concentration and dispersion forces of the population in tropical forests. We es-
timate the model using fine-resolution georeferenced data from four roadless river basins in
the Peruvian Amazon. We identify externality parameters that explain how population density
affects productivity in rural sectors by exploiting plausibly exogenous variation in the structure
of river networks. We then implement counterfactual simulations to evaluate policy impacts on
human welfare, deforestation, and natural resource depletion. These experiments demonstrate
that well-targeted place-based protection policies and transport infrastructure are complemen-
tary to improving both human welfare and ecological conservation.

The Peruvian Amazon is an ideal setting to study fundamental human-nature interactions
for two reasons. First, most of the population engages in traditional ways of life in remote
areas without modern technology and large-scale external investments. These features enable
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us to attribute resource extraction to small-scale farmers and hunter-gatherers and thus focus
on density externalities that they cause.1 Second, river networks almost solely constitute the
transportation routes in this region. This feature allows us to identify key structural parameters
by exploiting plausibly exogenous variation in the structure of river networks. In particular,
our dataset covers major river basins of the Peruvian Amazon (Figure 1) and consists of grid
cell-level geographical and remote sensing data, original community-level census from rural
communities, and national censuses.

Using this dataset, we start with three stylized facts that motivate the theoretical model.
First, we observe both spatial concentration and dispersion of populations and community lo-
cations. This fact suggests the presence of both strong agglomeration and congestion forces
of economic activities in rainforests. Second, while the land footprint around a community
increases with settlement size, per capita land footprint decreases. This pattern suggests that
as the community population increases, the cost of access to farmland through forest clearing
might become higher because of congestion forces around the settlement. Moreover, this neg-
ative relationship is convex, which suggests that a mean-preserving increase in the variance
of settlement size may increase total deforestation if this convexity is strong enough. Third,
while agriculture is widely observed in both concentrated and dispersed areas, natural re-
source extraction tends to occur more in locations surrounded by areas with lower population
densities. These observations suggest that the spatial extent over which density externalities
operate might vary across sectors.

Motivated by the stylized facts, we build a quantitative spatial model that highlights the
rainforest population’s trade-off: natural resource and land endowments are more accessible
in sparse areas owing to weak congestion, while dense areas have higher market access and
agglomeration benefits. Our model includes two rural sectors and an urban sector. The rural
sectors include an agricultural sector (crop production), which is associated with deforestation,
and a natural resource extraction sector (fishing, hunting, and forest products), which is linked
to biological resource depletion. The model analyzes trade of the products of the three sectors
based on comparative advantages across multiple locations (grid cells) in a general equilibrium
framework within a river basin. We explicitly incorporate agglomeration and congestion exter-
nalities for productivities in the two rural sectors. The model primarily focuses on the rural
spatial structure and incorporates the rural-urban linkage to capture rural remoteness. The
balance between the concentration and dispersion forces, including the agglomeration and con-
gestion externalities, determines the spatial distribution of economic activities in equilibrium.

We estimate the model in three steps. First, we estimate trade cost and demand parameters
without solving the model. Second, we calibrate the productivities that rationalize the observed
sectoral populations in all locations by inverting the model, given the parameters obtained

1This empirical setting is also important in that it is closely related to recent concerns and trends of defor-
estation in the Amazon. Kalamandeen et al. (2018) report that small-scale deforestation has recently increased
throughout the Amazon (in Brazil and other countries), raising concerns about the role of small-scale farmers in
forest conversion.
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in the first step. The calibrated productivities contain both productivity fundamentals and
endogenous terms caused by the density externalities. Third, we use a generalized method of
moments (GMM) procedure to estimate to estimate the density externalities, using the inverted
productivity composites as data and exploiting plausibly exogenous variation in the structure
of river networks. We construct a measure of “river network access” (RNA), which captures
the distance-weighted sum of access to other locations via the river network, as an instrumental
variable for each location’s population. The logic behind the identification is that the variation
in RNA, as a market potential shifter, affects productivity only through its effect on employment
and thus through externalities that arise, rather than through productivity fundamentals.2

The estimation reveals three types of sector-specific density externalities. First, we find a
strong congestion externality in forest clearing for access to agricultural lands. Second, we find
a strong agglomeration externality in agricultural production. More importantly, this agglom-
eration externality outweighs the congestion externality in access to land, implying that higher
concentration leads to higher productivity with less deforestation per farmer. Third, we also
find a strong congestion externality with spatial spillovers in natural resource extraction.

The estimated density externalities are quantitatively important. For example, the agglom-
eration externality contributes to substantially improving human welfare and reducing defor-
estation, at the expense of other natural resource endowments. Without the agglomeration
externality, human welfare decreases by about 7–13% and deforestation increases by about 18–
56% depending on the basin. On the other hand, without the agglomeration externality, the
natural resource depletion also decreases by about 1–3% through general equilibrium effects in
the basin. These impacts are primarily due to the sectoral reallocation of workers. Since agricul-
tural productivity is diminished, the economy needs more agricultural employment to satisfy
the population’s demand for agricultural goods, given that consumption demands across the
agricultural and natural resource goods are complementary.

We investigate mechanisms behind the agglomeration externality, focusing on the transac-
tion environment and agricultural intensification. Forest clearing and natural resource extrac-
tion are rivalrous, so it is straightforward that they face a congestion externality. In contrast, the
agglomeration externality in agriculture may not be immediately obvious, in part because ag-
glomeration has typically been discussed in urban settings. Using the original community-level
census information, we provide supportive evidence that agglomeration is primarily driven by
economies of scale in trade costs. The empirical results are consistent with the view that trans-
port modes, transport costs, and transaction costs are endogenous and are affected by the
community’s population. This mechanism is also consistent with the model, since the original
model is isomorphic to an alternative model in which a higher origin population leads to lower

2The immediate concern may be that being located near a river means high RNA but also high productiv-
ity. However, this concern is mitigated because RNA also captures distant river geometries. The independence
assumption is that, after controlling for a rich set of geographical conditions in the own location, unobservable
productivity fundamentals are not correlated with the variation in RNA that can be generated by exogenous river
shapes in locations far away from the own location. We also consider another instrument motivated by history.
Section 5 provides a more detailed discussion supporting the identifying assumptions.
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iceberg trade costs. In addition, using the producer-level agricultural census, we argue that
economies of scale in accessing inputs and technologies in the cropping and marketing process
are also behind the agglomeration externality, but to a lesser degree.

We assess two types of counterfactual experiments—transport infrastructure investments
and protection policies—with the aim of finding a “win-win” policy that simultaneously achieves
higher welfare, lower deforestation for agriculture, and less natural resource depletion. The
transport infrastructure investments aim to reduce high trade costs, which primarily stem from
the asymmetry of transport costs due to river orientations and the slow speed of river boats. We
evaluate transportation investments such as high-quality boats or dredging rivers as proposed
in the Amazon Waterway project (outlined in Lu 2019). Protection policies aim to answer the
following question: In the presence of density externalities, is it beneficial to concentrate the
ecological footprint in fewer spots rather than to have many small communities?

The counterfactuals show that well-targeted river infrastructure investments and place-
based protection policies are complementary to improving human welfare and ecological con-
servation. In particular, the composite intervention that combines the transport infrastructure
investments that connect hinterlands to the central area of a basin with protecting the rural
frontier simultaneously achieves the win-win outcome. Figure 2 presents a simplified illustra-
tion of this policy outcome that depicts the deforestation impact, abstracting from the sectoral
reallocation of workers.

The transport infrastructure that integrates hinterlands can reduce total deforestation by
generating more medium-sized settlements and spreading the agglomeration benefits more
evenly across the basin. Total deforestation decreases given the structure of congestion forces
in access to land, which is a negative and convex relationship between the settlement size and
deforestation per farmer around the settlement. Therefore, integrating hinterlands can reallo-
cate farmers from the central area to remote areas and reduce the variance of the settlement
size in the river basin, and thus total deforestation decreases. The comparison between panels
(A) and (B) of Figure 2 illustrates this argument. At the same time, agricultural productivity in
remote areas increases due to the agglomeration externality, implying that even development
results in more forest cover.

Protecting the rural frontier primarily works to mitigate natural resource depletion. It in-
creases the congestion forces in extractive activities across the basin but within a more compact
area for human settlements, as the surrounding population density increases in most areas for
human settlements. As the congestion externality with spatial spillovers increases across the
basin, productivity is decreased in most communities, resulting in the reduction of overall nat-
ural resource depletion. Given the congestion force in forest clearing, total deforestation further
decreases as the population concentrates in a smaller set of communities, which the comparison
between panels (B) and (C) of Figure 2 illustrates.

Actual counterfactual simulations in the four river basins, incorporating all general equi-
librium effects, reveal that this composite intervention increases welfare by about 1–2.1%, de-
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creases deforestation by about 1–7%, and decreases natural resource depletion by about 0.5–
2.4%. However, neither of these two types of interventions achieves this joint outcome alone.

Spatial targeting matters for both types of interventions. With respect to the transport in-
frastructure, where the improvement takes place within the spatial structure of river networks
determines whether total deforestation increases or decreases. In contrast to the previous case,
improving the transport infrastructure only in densely populated areas increases total defor-
estation in the basin by enhancing more concentration in the central area of the basin and
generating smaller communities with lower agricultural productivity and higher deforestation
per farmer in the hinterland. With respect to the protection policies, the location of protected
areas determines whether total natural resource depletion increases or decreases. For example,
a resettlement policy targeting the smallest communities increases total natural resource deple-
tion because the congestion forces from surrounding populations are not significantly affected
by dispersed protected areas, unlike when protecting the rural frontier. On the other hand, this
policy reduces deforestation more effectively than protecting the frontier (directly treating the
same number of populations) by concentrating the land footprint in much fewer spots rather
than spreading it across many small communities. This comparison illustrates the trade-off pol-
icymakers face in mitigating different types of environmental costs. Moreover, we also discuss
unintended consequences of a sector-specific protection policy as well as pathways to external
validity.

Related literature. This paper contributes to three strands of literature. First, it adds to
a large body of literature on the trade-off between economic development and environmental
goals (see Jayachandran 2022; Jayachandran 2023 for review). Specifically, this paper contributes
to the debate on the relationship between agriculture and deforestation (e.g., Abman and Car-
ney 2020; Abman et al. 2020; Angelsen 1999; Angelsen 2010; Carreira et al. 2024; Foster et al.
2002; Heß et al. 2021; Szerman et al. 2022). Empirical evidence on whether higher agricultural
productivity causes more deforestation is mixed. We propose new mechanisms and policies
that achieve higher agricultural productivity and lower deforestation without relying on the
strong conditions used in other recent papers. In particular, our model treats agriculture as
the most land-intensive sector (unlike Szerman et al. 2022), and we do not impose assumptions
about factor market constraints (unlike Abman et al. 2020). More importantly, we argue that
total deforestation, as an aggregate outcome in the economy, depends on how the agglomera-
tion benefits are spatially distributed. This insight highlights the importance of analyzing the
relationship between agriculture and deforestation in a general equilibrium framework. Fur-
thermore, we incorporate distinct types of environmental costs—deforestation and other natu-
ral resource extractions such as fishing and hunting—that have often been studied in isolation,
in a unified framework. Our counterfactual experiments relate to the policy discussions on pre-
serving rainforests, including protected areas, taxes, and infrastructure (e.g., Alix-Garcia et al.
2013; Alix-Garcia et al. 2015; Araujo et al. 2020; Assunção et al. 2023; Madhok 2022; Naughton-
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Treves et al. 2011; Sims and Alix-Garcia 2017; Souza-Rodrigues 2019). We contribute to them by
demonstrating the complementarity between protection policies and transport infrastructure
investments, which have often been investigated separately, in reducing the different types of
environmental costs. In addition, this paper joins the discussion on commons (e.g., Dasgupta
and Mäler 1995; Hardin 1968; Ostrom 1990; Ryan and Sudarshan 2022). To our knowledge, this
paper is the first to investigate spatial competition over common pool resources in rural areas
using a quantitative spatial model.

Second, this paper contributes to environmental considerations in economic geography. A
growing number of studies are examining the impact of a path of climate change that is taken
as given on economic activities and welfare using spatial models at various levels, including
country (e.g., Balboni 2019; Rudik et al. 2021), regional and continental (e.g., Conte 2022; Jedwab
et al. 2022), and global (e.g., Costinot et al. 2016; Cruz and Rossi-Hansberg 2021; Nath 2022).
This paper complements this literature by analyzing new endogenous environmental outcomes
in tropical forests. In particular, this paper is one of the first papers to analyze deforestation
using a quantitative spatial equilibrium model (Farrokhi et al. 2023; Gollin and Wolfersberger
2023; Restrepo and Mariante 2024). Moreover, this paper also relates to the literature on intra-
country agricultural trade in developing countries (e.g., Bergquist et al. 2022; Pellegrina 2022;
Rivera-Padilla 2020; Sayre 2022; Sotelo 2020). This paper is distinct from the previous literature
in that it applies a quantitative spatial model in a more spatially granular setting in rural
areas. In addition, it incorporates extraction of natural resource products, which has contrasting
characteristics to agriculture, and features sector-specific density externalities.

Third, this paper enriches our understanding of agglomeration economies (see Ahlfeldt and
Pietrostefani 2019; Duranton and Puga 2004; Duranton and Puga 2020 for comprehensive re-
view). While agglomeration has typically been discussed in urban settings in the literature, this
paper is the first to uncover the presence of agglomeration externality in rainforests. We present
the mechanism behind the agglomeration using rich community- and household-level census
data, which amplifies this contribution. In this respect, this paper is also related to previous
research that study economies of density in agriculture (Boserup 1965; Caunedo et al. 2020;
Holmes and Lee 2012; Salehi-Isfahani 1993; Stryker 1976) and contributes to them by deriving
general equilibrium implications for human welfare and environmental costs.

Roadmap. The remainder of this paper proceeds as follows. Section 2 introduces the em-
pirical setting and data sources. Section 3 presents stylized facts. Section 4 describes the
quantitative spatial model. Section 5 calibrates and estimates parameters of the model. Section
6 investigates mechanisms behind the agglomeration externality. Section 7 provides counter-
factual simulations. Section 8 concludes the paper and presents directions for future research.
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2 Empirical Setting and Data

The Peruvian Amazon, our study area, is an ideal setting to study fundamental human-nature
interactions in rainforests for two reasons. First, most of the population engages in tradi-
tional ways of life in remote areas without modern technology and large-scale external in-
vestments. This feature allows us to attribute resource extraction to small-scale farmers and
hunter-gatherers and focus on the density externalities that they cause. Second, river networks
almost solely constitute the transportation routes in this region. We take advantage of this
feature to identify key structural parameters by exploiting the exogenously given structure of
river networks.

This empirical setting is important in that it is also closely related to recent concerns and
trends of deforestation in the Amazon. In recent years, small-scale deforestation has increased
throughout the Amazon (in Brazil and other countries), raising concerns about the role of
small-scale farmers in forest conversion. Kalamandeen et al. (2018) find that the number of
small forest loss patches (< 1 ha) increased by more than 30% between 2001–2007 and 2008–
2014 in the entire Amazon, while the number of large ones (> 50 ha) declined significantly.
In the context of the Peruvian Amazon, government documents tend to blame smallholder
farmers who practice shifting cultivation for most small-scale deforestation (Ravikumar et al.
2017). Potapov et al. (2014) estimate that the forest cover lost between 2000 and 2010 in Peru
is equivalent to 2.44% of 78.6 million ha of the Peruvian humid tropical forest biome area and
that the majority of this forest loss (92%) was due to clearing. Moreover, recent hotspots of
forest loss have been shifting from the Brazilian Amazon to Peru and Bolivia (Kalamandeen et
al. 2018). This fact also suggests the importance of research on rainforest conservation outside
the Brazilian Amazon, where less is known.

Our study area consists of two administrative departments, Loreto and Ucayali, that cover
an area of 471,199 km2 or about 85% of the Peruvian Amazon. Iquitos and Pucallpa are the
capitals of these departments, respectively. Figure 1 shows our study area. The area covered by
our data consists of four major river basins of the Peruvian Amazon (Napo-Amazon, Pastaza,
Lower Ucayali, and Upper Ucayali), which together encompass a vast area of 117,680 km2, more
than double the total area of Costa Rica and close to that of Malawi. We will consider a general
equilibrium in the model in each of these major river basins.

The main data and their sources are presented in the following sections. Appendix B pro-
vides more detail about the data and introduces additional data.

2.1 Grid Cell-Level Geographic Information

Our primary units of empirical analysis are 1 km × 1 km grid cells covering the four basins.
We construct:

Distance matrix. We select all the grid cells within 5km from river lines. We consider rivers
of river orders 1–5 where higher river orders mean more splits from the central river. We then
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implement Dijkstra shortest path calculations between all pairs of the selected grid cells. To
calculate the shortest path, we take into account total upstream and downstream distances by
river travel as well as distance by land travel.3

Forest cover. We classify Landsat satellite imageries from 1985, 2001, and 2015 as forest, non-
forest, and masked (cloud and water), using CLASlite (Asner et al. 2009),4 and we aggregate
them into grid cell-level information. The forest or non-forest area within a grid cell is measured
by the number of 30 m × 30 m pixels classified as forest or non-forest. From the multi-period
information, we also construct variables of forest loss, forest recovery, and forest disturbance.
Forest loss and recovery are measured between 1985 and 2015. The area of forest loss is the
area within a grid cell that changed from forest to soil. The area of forest recovery is the area
within a grid cell that changed from soil to forest. Forest disturbance is measured between 2001
and 2015. Forest disturbance includes any events that disturbed primary forests, such as the
appearance of secondary forests. Secondary forests are forests that re-grow during the fallow
phase of the shifting cultivation system after initial clearing of primary forests and cropping.

Our empirical analyses use many other cell-level geographic data and variables, which we
list in Appendix B.

2.2 Peruvian Amazon Rural Livelihoods and Poverty Project

The Peruvian Amazon Rural Livelihoods and Poverty (PARLAP) project5 collects key community-
and household-level data from the population living in the four major river basins in the Pe-
ruvian Amazon. All the surveyed communities are geo-referenced and can be matched with
other publicly available census data by unique community-level identifiers. The PARLAP data
consist of the following types of data.

Community Census (CC). CC is a basin-wide census that collects community-level infor-
mation from almost all communities in the four river basins (919 communities in total). The
field survey team conducted the data collection over the course of 19 months during 2012–2014.
In each community, the field team sought out the local authorities and conducted a focus group
interview. The CC data include information on community history (foundation, relocation, past
shocks), population size, infrastructure (such as transport modes and communication methods),
public services, across-community formal and informal networks, commodity prices, initial and
current economic activities, and initial and current natural resource endowments. We rely on

3Cadieux et al. (2020) provide a detailed explanation of the Python algorithm used for these calculations.
4See Supplementary Information of Coomes et al. (2021) for the detailed procedure of processing satellite

images. We are also working on constructing the forest cover data from the Google Earth Engine.
5Detailed information about the project can be found at: https://parlap.geog.mcgill.ca/. We gratefully

acknowledge two PARLAP field teams that conducted the survey work, often under challenging conditions, in
Loreto (Carlos Rengifo Upiachihua, Iris Anelís Arevalo Piña, Judiht del Castillo Macedo, Jacob Gonzales Bardales,
Kathicsa Naydu Mendoza Montalvan, Norith Paredes Salas, and Inelza Zumbilla Ajón) and Ucayali (Luis Angel
Collado Panduro, Claudio Sinuri Lomas, Santiago Nunta, Diego Fernando Dávila Gomez, Eduardo Carlos Perea
Tuesta, and Segundo Jorge Vázquez Flores). This study would not have been possible without their tireless efforts
and steadfast dedication to the project, or without the support of community authorities and from participating
households throughout the study region.
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these data for various purposes throughout this paper. Appendix B describes the data in more
detail. Henceforth we refer to these data as the “CC data.”

Community/Household Survey (CS/HS). The PARLAP also surveyed 235 communities
from among the 919 communities in the census. This subset of communities was selected
by stratified random sampling based on ethnicity, location, initial resource endowments, his-
tory, and public services. From these 235 surveyed communities, about 4,000 households were
surveyed.6 These survey data were collected between 2014 and 2016. The community survey
obtains information on history, school and education, health care, institutions, and natural re-
source conservation. The household survey contains detailed information on forest clearing,
land use and agricultural production, and natural resource extraction. We use these data for
some descriptive analyses. Henceforth we refer to these data as the “CS data” and the “HS
data.”

Unless otherwise noted, we aggregate variables from these data into the grid cells by match-
ing each community with a corresponding grid cell.

2.3 National Censuses

We use the following censuses to complement the dataset.
Peru Population and Housing Census. The Institute Nacional de Estadistica e Informat-

ica (INEI) in Peru conducted population censuses in 1981, 1993, 2007, and 2017. The census
generally contains information on total population size, total number of households, and basic
demographic characteristics in the entire country, with variations in the specific content across
census years. We primarily use the data from 2007 and 2017.7 We aggregate variables from
these data into the grid cells. Populations in the urban centers (and a few rural communities)
not covered by the CC data are extracted from the 2017 census to construct comprehensive pop-
ulation data for the general equilibrium units of the spatial model. Henceforth we call these
data the “INEI population census.”

Peruvian Agricultural Census (CENAGRO). The INEI collected these data in 1994 and
2012, conducting direct interviews with agricultural producers throughout Peru. We use the
data from 2012. These data contain comprehensive farm-level and plot-level information about
land use, land tenure, crop choices, irrigation, marketing, livestock practices, credit access, in-
frastructure and machinery, labor, input use, and demographic characteristics of the producers’
household members. Since a community-level unique identifier is available for each agricul-
tural producer’s location, we can match these data from Loreto and Ucayali departments in the
Peruvian Amazon with the others. We primarily use these data to investigate the mechanisms
underlying the density externalities in agriculture implied by the structural model.

6If the surveyed community had more than 20 household, then we surveyed the 20 households selected by the
stratified random sampling based on wealth status. Otherwise, we surveyed all households in the community.

7In order to construct the long-term panel data, we are currently constructing the data in 1993 by manually
matching its community names with the 2007 and 2017 data.
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3 Stylized Facts

This section presents stylized facts that motivate the model and counterfactual policy interven-
tions.

3.1 Spatial Distribution of Communities and Populations

Fact 1A: Spatial concentration and dispersion of populations and communities.

Figure 3 indicates the concentration and dispersion of populations. The circle dots in the figure
represent the centroids of 1 km × 1 km populated grid cells in rural locations (n = 900). The
square symbol in each basin represents the urban center. As shown in the figure legends, the
circle dots represent quantiles of population sizes whereby each of the five ranges contains
a nearly equal number of locations. It is apparent from the legend that, in all four basins,
more than 80% of rural locations have populations smaller than 450. Moreover, about 40% of
rural locations are very small, with populations of 150 or less. In contrast, fewer than 50 rural
locations (out of 900) have populations larger than 1,000.

Figure A.1 and Figure A.2 illustrate the concentration and dispersion of locations commu-
nity locations. These maps show the establishment of communities in the Napo and Upper
Ucayali basins over decades. Every two decades, newly founded communities appear in both
sparse and concentrated areas.

Implication. This fact suggests the presence of both strong agglomeration and congestion
forces of economic activities in rainforests.

3.2 Human Settlements and Forest Cover

It is not feasible to identify the direct cause of deforestation from information on forest loss
obtained from satellite images. It might nevertheless be useful to investigate the relationship
between human settlements and forest cover. We implicitly presume that the deforestation
observed around a rural community is primarily caused by the population that settles in the
community. Before stating the stylized facts that connect to the model, we first report the overall
relevance of the local population for the forest cover in the four basins.

Figure 4 visualizes the significant overlap between community locations, populations, and
deforestation in the Upper Ucayali basin. To give a sense of the overall magnitude of this
relationship, Table 1 presents summary statistics on forest loss from 1985 to 2015 (in hectares)
for each grid cell category according to the presence of settlements. Panel (A) reports summary
statistics in all grid cells in the four basins. According to the first row, the average deforested
area in cells with a census community (10.434 ha) is significantly higher than in cells without a
census community (2.842 ha). However, the areas where people clear forest might not be exactly
the same as their residential locations reflected in the census community location. Therefore,
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other rows in this panel present summary statistics on deforestation in grid cells within 2 km
and 5 km of a census community. Importantly, the column of sum in the last two rows indicates
that more than 50% of total deforestation in the four basins is observed in areas within 5km
from the census communities. Panel (A) reports summary statistics in grid cells within 2km of
the census communities in the four basins, given that most communities are located along the
river lines. Among these selected grid cells, the last two rows indicates that almost 60% of total
deforestation in the four basins is observed in areas within 5km of the census communities.

Figure 5 shows the cumulative distributions of the percentage of deforested area in each
grid cell for cells with and without census communities. This figure implies the same takeaway
as in the previous table. The top-left diagram implies that cells with census communities have
much higher deforestation. The other diagrams imply that the difference in the distribution
of deforested area decreases as the buffer size increases. Moreover, these patterns are robust
to the period of measuring deforestation. Figure A.3 shows the same relationship, but with
deforestation measured between 2001 and 2015.

These patterns stress the importance of small-scale farmers as a cause of deforestation in
the study area. This takeaway is indeed consistent with the findings from the existing literature
that we introduced at the beginning of section 2. Meanwhile, the positive relationship between
human settlements and deforestation is straightforward in theory. We next present a more
important fact that motivates the model and policy interventions.

Fact 2A: The relationship between population and per capita land footprint is negative and
convex.

Figure 6 plots populations and per capita forest loss areas (between 1985 and 2015) or per
capita non-forest areas (in 2015) within 2 km buffers from the 2007 INEI population census
communities in the Napo-Amazon basin. The total population in the buffer surrounding a
community is measured by summing populations from communities whose centroids are inside
the buffer. Note that, if we assume that Amazon river basins were fully covered by rainforests
at the very beginning (i.e., before any human settlements), then non-forest area could also be a
reliable measure of total net deforestation associated with human settlements until today. With
the use of either way of measuring the deforestation, the figure is consistent with a negative
relationship between population and per capita land footprint.

Furthermore, the negative relationship between population and per capita land footprint
is convex as the lowess lines illustrate. Figure A.4 and Figure A.5 show this relationship for
different buffer sizes (1 km, 2 km, 5 km) and for all four basins. These figures illustrate that the
convex relationship is robust to different buffer sizes and different basins.

This relationship is correlational, but suppose for simplicity that we take this relationship
as structural as a thought experiment. Then, this relationship suggests the following two take-
aways toward the modeling, estimation, and policy simulations. First, even without a land
market, a congestion force may exist in forest clearing depending on the population size in
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a residential location. Second, and more importantly, if this convexity is strong enough, a
mean-preserving increase in the variance of settlement size might increase total deforestation.8

Recall Figure 2 that indeed illustrates the second point. We ignore the left-hand maps
now and focus on the right-hand diagrams in scenarios (A) and (B), which depicts the convex
relationship. We consider these two scenarios for an economy with five communities and a
fixed total population of 16. In scenario (A), four communities each have a population of two
and a deforested area of 10 hectares per capita. Another community has a population of eight
and a per capita deforested area of 3 hectares. In this scenario, the total deforestation in the
economy is 104 hectares. In scenario (B), four communities each have a population of three and
a deforested area of 6 hectares per capita. Another community has a population of four and a
per capita deforested area of 5 hectares. In this scenario, the total deforestation in the economy
is 92 hectares and is reduced from the previous scenario.

These cross-sectional relationships are important even though there are dynamic processes
of deforestation and reforestation in the real world. Farmers in our study area (and in many
tropical forest areas in the world) practice shifting cultivation with the following swidden-
fallow cycle. First, farmers clear primary (old-growth) forests and burn the vegetation to obtain
land plots, and then they plant crops. Second, when plots become no longer productive, plots
are left in fallow and the secondary forest regrows. After several years of fallow, farmers clear
such secondary forests again and the cycle is repeated. Although the deforested locations
around the community are moving over time due to this cycle, at any given moment the stock
of forest fallow and the total deforested area around the community remain relatively constant
(Coomes et al. 2021). Therefore, the cross-sectional relationship between the settlement size and
deforestation has a more significant variation, which motivates our static theoretical model.

Implication. To summarize, these facts imply the following two takeaways. The first take-
away is the importance of modeling the congestion externality in forest clearing in a land-
intensive sector and estimating its magnitude. The second takeaway is that policy interventions
that lead to a change in the variance of settlement size even with the same total population
might have an important ecological consequence.

3.3 Spatial Distribution of Agriculture and Natural Resource Extraction

We finally focus on sectoral difference in the spatial distribution of economic activities. The
two main types of activities in our study area are agriculture and natural resource extractions.
Agricultural sector includes food crops (e.g., manioc, farina, plantain) and cash crops (e.g.,
rice, maize, beans, sugar cane, vegetables, fruits). Natural resource extractions include wildlife
extractions and forest products. Wildlife extractions include fishing and game meat (hunting).

8Figure A.6 shows a clean log linear form of the relationship between population and per capita deforestation
with different buffer sizes. This relationship motivates the decision of the functional form of the congestion
externality in the model. Appendix C.1 investigates the relationship between the Market Access and forest cover
changes (forest disturbance, forest loss, and forest recovery) implied by a simple one sector model and it reports
consistent facts.
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Forest products consist of non-timber forest products (NTFP) and timber.9

Exploiting the HS data for detailed household-level activity choices, we find the following
two facts.

Fact 3A: Agriculture is widely observed in both concentrated and dispersed areas.

Fact 3B: Natural resource extraction is observed more in areas with lower surrounding pop-
ulation densities.

Figure 7 and Figures A.7–A.9 illustrate Facts 3A and 3B. These figures present cumulative dis-
tributions of households that do and do not engage in each activity in terms of the surrounding
population density of their settlements with different buffer sizes.10 The population density
in a smaller buffer of a community becomes close to the population density of the community
itself. A smaller population density in a large buffer of a community implies more sparseness
of communities and less competition over natural resources. Figure A.7 shows that distribu-
tions of households with and without any activity in terms of the population density within
1km from the community are close. In contrast, Figure 7 shows that distributions of households
with and without each natural resource activity in terms of the population density within 10km
from the community become distinct, while those with and without agricultural activities (food
crops and cash crops) remain close. Comparing those with other buffer sizes as well (x =2 km,
5km), we can summarize that spatial distributions of natural resource extractions become more
distinct from agricultural activities as the buffer size enlarges.

Implication. These observations suggest that the spatial extent over which density external-
ities operate is heterogeneous across sectors. This takeaway motivates the model that incorpo-
rates multiple sectors with distinct types of density externalities.

4 Quantitative Spatial Model of Rainforest Communities

We construct a multi-sector spatial model that features the concentration and dispersion forces
of the population in tropical forests. The model considers a general equilibrium in a river
basin in the Amazon rainforest and analyzes trade across communities based on comparative
advantage. The model is built on Michaels et al. (2011) and incorporates novel sector-specific
density externalities and a rural-urban linkage in an environment of missing land market.
While the model incorporates the rural-urban linkage to capture rural remoteness, it focuses
primarily on the rural spatial structure and abstracts from the urban form.

9Timber logging also involves deforestation. For the deforestation outcome in counterfactuals, however, we
focus on deforestation for agriculture. Moreover, timber logging constitutes the smallest share in the natural
resource extraction sector and we abstract from its deforestation impact.

10The total population in the xkm buffer surrounding a community is measured by summing populations from
census communities whose centroid are inside the buffer.

14



The model has three purposes. First, the model rationalizes the stylized facts presented in
the previous section. Second, we model rainforest populations’ fundamental trade-offs between
richer resource endowments in sparse areas and higher market access and agglomeration ben-
efits in dense areas. Third, counterfactual experiments based on the model quantify two types
of trade-offs from policy planners’ perspective. The first trade-off is between rainforest conser-
vation and local populations’ welfare. The second type of trade-off is between different aspects
of conservation, such as between deforestation and biological resource depletion.

4.1 Geography and Population

We consider a general equilibrium in each river basin b. Each basin consists of a set of rural
locations (Rb) and one urban center (ub), indexed by o (origin) and d (destination), where o, d ∈
Ib = Rb

⋃
ub.11 There are three sectors—agricultural production (Ag) and natural resource

extraction (Nr) in the rural locations and an urban sector (M) in the urban center. Locations
exogenously differ in productivity fundamentals (e.g., soil quality and access to water) in each
sector and distance to other locations given the river networks. The total population in each
basin is Nb and fixed, while we assume the free mobility of the population within the basin.12

The total land area (including areas covered by rainforests) in each basin is Lb. The notation of
basin b is omitted for simplicity of exposition hereafter in this section.

Each worker in o obtains wage wo by inelastically supplying one unit of labor and chooses
how much of each variety (indexed by j) of the rural sectoral goods and of the urban good, all
of which are produced in the basin. In particular, a worker solves the following problem:

max{co,Ag(j),co,Nr(j),Co,M}

[
αAgC

σ̄−1
σ̄

o,Ag + αNrC
σ̄−1

σ̄
o,Nr + αMC

σ̄−1
σ̄

o,M

] σ̄
σ̄−1

s.t.
∫ nAg

0 po,Ag(j)co,Ag(j)dj +
∫ nNr

0 po,Nr(j)co,Nr(j)dj + Po,MCo,M = wo

where Co,Ag ≡
[ ∫ nAg

0 co,Ag(j)
σ−1

σ dj
] σ

σ−1 and Co,Nr ≡
[ ∫ nNr

0 co,Nr(j)
σ−1

σ dj
] σ

σ−1 are continuums of va-
rieties of the agricultural and natural resource goods. Co,M represents consumption of the single
urban good and Po,M is its price in o. σ represents the elasticity of substitution across varieties
within each sector and σ̄ represents the elasticity of substitution across sectors. Solving this
problem yields the following indirect utility:

Vo =
wo[

∑K=Ag,Nr,M ασ̄
o,KP1−σ̄

o,K

] 1
1−σ̄

11The urban centers in the four basins are Iquitos in the Napo-Amazon basin, San Lorenzo in the Pastaza basin,
Orellana in the Lower Ucayali basin, and Pucallpa in the Upper Ucayali basin, respectively.

12Since indigenous and folk populations tend to have been living within a particular region for a long time since
their ancestors, we do not consider population inflows to a river basin or outflows from a river basin. Indeed, the
CC data show that only 1.4% of the rural communities are colonist settlements. At the same time, we also observe
migration and community relocations in response to economic opportunities, which would be consistent with the
assumption of labor mobility within the narrow geographical scale of a river basin.
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expenditure shares across varieties within each rural sector in each location:

α̃o,K(j) =
Pσ

o,K po,K(j)(1−σ)

∑K′=Ag,Nr,M Po,K′
K = Ag, Nr (1)

and expenditure shares across sectors in each location:

α̃o,K =
ασ̄

KP(1−σ̄)
o,K

∑K′=Ag,Nr,M ασ̄
K′P

1−σ̄
o,K′

K = Ag, Nr, M (2)

where Po,Ag ≡
[ ∫ nAg

0 po,Ag(j)1−σdj
] 1

1−σ and Po,Nr ≡
[ ∫ nNr

0 po,Nr(j)1−σdj
] 1

1−σ are sectoral price in-
dices.

4.2 Production with Density Externalities

Agricultural production with congestion and agglomeration externalities

Agricultural production consists of two steps. The first step is to access land for cultivation
by clearing forest. There is no land market. We thus define the production function of “land
access” for cropping variety j as follows:

Lo(j) = Ao,LN−µL
o,Ag · No,L(j), o ∈ R (3)

where Lo(j) is the amount of land cleared for cropping variety j of the agricultural products
and No,L(j) represents employment used to access this land.

The first factor of the production function (Ao,LN−µL
o,Ag) represents the productivity compos-

ite which combines productivity fundamentals (Ao,L) and a congestion force. We assume the
common productivity fundamentals Ao,L of land access for cropping different varieties in each
location, given that mixed cropping is commonly observed in the shifting cultivation system
in tropical forests. The congestion force in forest clearing depends on total agricultural em-
ployment in the location (No,Ag) and is governed by parameter µL. A positive value for this
parameter indicates that as the community population increases, the accessibility of land avail-
able to each person is reduced.13

The second step is to produce agricultural goods given the accessed land. We define the

13Farmers clear forests to obtain agricultural land only nearby their residential locations in the absence of the
land market and property rights and with a high monitoring cost. As the community population increases, the cost
of access to farmland through forest clearing would become higher. In the absence of a land market, community
members negotiate with each other to distribute the land they each use as farmland. The larger the community
population, the higher the cost of negotiating and monitoring areas for forest clearing. For these reasons, we
hypothesize that µL > 0, which is also consistent with Fact 2A.
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production function of variety j of agricultural goods as follows:

Qo,Ag(j) = zo,Ag(j)N
µAg
o,Ag · No,C(j)γLo(j)(1−γ), o ∈ R (4)

where No,C(j) represents employment for cropping variety j on the cleared land. That is, the
total agricultural employment in o is No,Ag = No,L + No,C =

∫ nAg
0 (No,L(j) + No,C(j))dj.

The first factor (zo,Ag(j)N
µAg
o,Ag) represents the productivity. A stochastic factor in the produc-

tivity, zo,Ag(j), follows the Fréchet distribution such that FAg(z) = exp(−Ao,Agz−θ), where Ao,Ag

represents the absolute advantage and θ represents the comparative advantage. Lower θ cor-
responds to higher dispersion of productivity. Productivity in this second step again depends
on the total agricultural employment in the location. Parameter µAg governs the agglomeration
force in agricultural production and marketing. A positive value for this parameter indicates
that as the community agricultural population increases, agricultural productivity increases.14

Natural resource extraction with congestion externality across space

We define the production function of extracting variety j of natural resources as follows:

Qo,Nr(j) = zo,Nr(j)
[

∑
d∈R

D−ν
od Nd,Nr

]−µNr
· No,Nr(j), o ∈ R (5)

where No,Nr(j) represents employment for extracting variety j of natural resource. Note that the
amount of Qo,Nr(j) is natural resource extracted by individuals residing at o from surrounding
areas by search and travel (i.e., not extracted only from o). The total employment for natural
resource extraction in o is No,Nr =

∫ nNr
0 No,Nr(j)dj. In contrast to agricultural production, labor

is the only factor for natural resource extraction. In rural locations o ∈ R the total population
is thus No = No,Ag + No,Nr.

The first factor (zo,Nr(j)
[

∑d∈R D−ν
od Nd,Nr

]−µNr
) represents the productivity. A stochastic

factor in the productivity, zo,Nr(j), also follows the Fréchet distribution such that FNr(z) =

exp(−Ao,Nrz−θ), where Ao,Nr represents the absolute advantage and θ is the same comparative
advantage parameter defined above. Productivity depends on employment of natural resource
extraction not only in the own location but also in surrounding locations. Parameter µNr gov-
erns the congestion force with spatial spillover from the surrounding population in the common
pool natural resource extraction. Variable Dod represents the river-equivalent distance between
cells o and d along the shortest path. Parameter ν governs the spatial decay in access to natural
resources. The implicit assumption underlying this specification is that people travel longer
distances for natural resource extraction than for agriculture.15

14We hypothesize that µAg > 0, but the empirical analysis for estimating this parameter does not restrict it to be
positive. There are several possible mechanisms under which the agglomeration externality may exist. Section 6
provides a detailed discussion.

15We hypothesize that µNr > 0 and ν > 0, which are consistent with Fact 3B, but the empirical analysis for
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Urban good production at the urban center

The urban good contains miscellaneous non-food (manufacturing and service) items, but for
simplicity we express it as a single good and define its production function as:

Qu,M = Au,M · Nu,M (6)

where Nu,M (= Nu) is employment in the urban center and Au,M is exogenous productivity.

4.3 Prices and Trade

Let pod,K(j) be the price of product j in sector K produced in o (origin) to be purchased in d
(destination). We define the iceberg trade cost of sector K goods, denoted by τod,K, such that
it satisfies the following relationships: for K ∈ {Ag, Nr}, pod,K(j) = τod,K poo,K(j), τoo,K = 1,
τod,K > 1 for o 6= d, and τod,K < τoi,Kτid,K for o 6= i 6= d, where o ∈ R and i, d ∈ I . For the urban
good, Pd,M = pud,M = τud,M puu,M = Pu,M, where τud,M > 1 for d ∈ R and τuu,M = 1.

Trade cost between a pair of locations may be asymmetric. That is, while the above spec-
ification of iceberg trade cost is standard in the literature, τod,K = τdo,K does not necessarily
hold because of river orientations. The trade literature often assumes symmetric trade costs,
but the asymmetry would matter in particular environments such as transports along a river
or a high-slope road and during periods before modern transport technologies were adopted.
For example, Chen et al. (2022) discuss that exogenously determined asymmetric trade costs
play an important role in predicting city locations in ancient Greece where the major transport
mode was sailing.16

We define Dod as the downstream-river-equivalent kilometers along the lowest-cost route
from o to d and assume that:

Dod = Dod,down + λupDod,up + λlandDod,land (7)

where Dod,down, Dod,up, and Dod,land are the distances (in kilometers) of going downstream and
upstream on the river and the distance of land travel. λup and λland are the parameters captur-
ing the downstream-river-equivalent distance per kilometer of upstream and land travels (i.e.,
relative travel costs in terms of downstream-river travel). We then parameterize the iceberg
trade cost as:

τod,K = DδK
od (8)

estimating these parameters does not restrict them to be positive. In addition, forest clearing for agriculture may
also affect biological resource endowments and this sector’s productivity. However, we are not incorporating this
across-sector externality. Section 5.3.2 describes the reasons for this model choice in detail.

16Trade costs could also be endogenous. See, for example, Brancaccio et al. (2020) and section 6 for more detailed
discussion.
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where δK is the elasticity of trade cost of sector K goods with respect to the effective distance.
We assume perfect competition among producers of all the sectors. Under perfect competi-

tion, prices are equalized to marginal costs as follows. For the agricultural goods, poo,Ag(j) =
wo

zo,Ag(j)A(1−γ)
o,L N

µ̃Ag
o,Agκ1

, where µ̃Ag ≡ µAg − µL(1− γ) represents the composite of density externali-

ties in agriculture and κ1 contains constant terms.17 For the natural resource goods, poo,Nr(j) =
wo

zo,Nr(j)[∑d∈R D−ν
od Nd,Nr]

−µNr
. For the urban good, Pu,M = wo

Ao,M
.

Following Eaton and Kortum (2002), we can derive each destination’s expenditure share on
goods shipped from each origin. For the rural goods K = Ag, Nr, the expenditure share across
locations within a sector is expressed as:18

πod,K =
Ão,K(woτod,K)

−θ

∑o′∈R Ão′,K(wo′τo′d,K)−θ
, o ∈ R, d ∈ I (9)

where Ão,K represents the productivity composite which contains both exogenous and endoge-
nous components of productivity:

Ão,Ag ≡ Ao,Ag A(1−γ)θ
o,L N

µ̃Agθ

o,Ag κθ
1 (10)

Ão,Nr ≡ Ao,Nr[ ∑
d∈R

D−ν
od Nd,Nr]

−µNrθ

The urban good is only purchased from the urban center u in all locations.

4.4 Spatial Equilibrium

The spatial equilibrium is defined as the following conditions.

1. The labor market for agricultural production clears in all the rural locations:

woNo,Ag = ∑
d∈I

πod,Agα̃d,AgwdNd ∀ o ∈ R (11)

2. The labor market for natural resource extraction clears in all the rural locations:

woNo,Nr = ∑
d∈I

πod,Nrα̃d,NrwdNd ∀ o ∈ R (12)

3. The labor market for the urban good clears in the urban center:

wuNu,M = wuNu = ∑
d∈I

α̃d,MwdNd (13)

17Specifically, κ1 = γγ(1− γ)(1−γ).
18= Pr (d buys a good from o) = Pr (o sells a good at the lowest price to d) = Fraction of goods that d buys from o
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4. The overall labor market clears:

N = ∑
o∈R

No + Nu = ∑
o∈R

∑
K∈{Ag,Nr}

No,K + Nu,M (14)

5. Utility is equalized across populated locations due to free labor mobility:

Vo =
wo[

∑K=Ag,Nr,M P1−σ̄
o,K

] 1
1−σ̄

= U ∀ o ∈ Ĩ (15)

where Ĩ is the set of all locations that have positive populations.

6. The total deforested area does not exceed the available land area: ∑o∈R Lo ≤ L̄

Solving the model involves solving for endogenous employment shares and wages, given the
geography, productivity fundamentals, parameters, and the total population in the economy.

5 Estimating the Model

Table 2 summarizes the parameters of the model. We estimate these parameters in the following
sequential steps and then quantify the effects of density externalities.

5.1 Obtaining Parameters without Solving the Model (Step 1)

Trade cost parameters

We first calibrate the elasticity of trade cost with respect to the effective downstream-river-
equivalent distance for each sector ({δK}), using price observations in the populated grid cells
and the downstream river distance. The CC data collect prices of representative products of
agricultural and natural resource sectors in the census communities (see Appendix B.1 for
details). We compile the grid cell-level price data by computing average prices of goods in each
cell. We then obtain price ratios of these products between all pairs of grid cells that have non-
missing price observations. We calibrate δK by minimizing the squared sum of (pMax

od,K −DδK
od,down)

where pMax
od,K ≡ maxj{pd,K(j)/po,K(j)} is the maximum price ratio across all the varieties in

each sector among location pairs that satisfy Dod,up = Dod,land = 0. Although the price ratio
should be constant in j under the model, we need to take the maximum price ratio among the
observed prices for the following two reasons. First, this approach mitigates the concern that
observed price gaps of each product might underestimate trade costs, given our limited price
information19 and that price ratios between two locations are bounded above by trade costs

19The price data have the following limitations. First, we do not have multiple periods of price observations.
Second, we have a smaller number of products compared with the actual potential number of varieties that people
in our study area are producing. Third, we do not observe origins and destinations of these varieties.
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between them (Eaton and Kortum 2002). Second, we assume that τod,K is the cost of transport
by the most widely available transport mode (“peque-peque,” shown in the top-right picture
of Figure A.10). However, even if the location pair consists of actual origin and destination,
the observed price ratio may reflect transports by other boat types that are superior (e.g., the
bottom two pictures of Figure A.10), in which case the trade cost is underestimated. We obtain
δ̂Ag = 0.178, δ̂Nr = 0.137, and δ̂M = 0.098. These values lie in a standard range of values from
the related literature. Values of trade costs that are higher than our estimates nevertheless lead
to qualitatively robust subsequent results and just amplify our core findings.

We next calibrate the effective distance parameters in terms of the downstream distance on
the river (λup, λland). We obtain λ̂up = 1.282, using records of travel time by peque-peque for
several routes in the Peruvian Amazon.20 We obtain λ̂land = 36.767, using records of trans-
portation costs by land travels. Appendix C.2 provides the detail procedure to estimate these
parameters.

Having obtained the lengths of river (downstream and upstream) and land travels in the
shortest paths and the relative distance parameters, we compute the effective downstream-
river-equivalent distance for all pairs of grid cells. To solve the spatial equilibrium in a later

stage, we set τod,K = D̂δ̂K
od , where D̂od is calculated by (22) using λ̂up and λ̂land.

Demand parameters

We estimate elasticity of substitution between varieties within each sector (σ) and between
sectoral composite products (σ̄), using household-level information on expenditures and unit
values (interpreted as buying prices) from the Peru National Household Survey. Appendix C.2
describes the data and provides the detailed procedure for estimating these parameters. We
obtain σ̂ = 2.401 (substitutes since σ̂ > 1) and ˆ̄σ = 0.752 (complements since ˆ̄σ < 1).21

Other parameters

We assume that the labor cost share in the agricultural production is γ̂ = 0.6, which lies in a
standard range of values from the related literature. For example, Sotelo (2020) reports that the
average labor cost share in crop production in Peru is 0.55. We assume that the productivity
dispersion (the shape parameter) in the rural sectors is θ̂ = 7.8, drawn from the study by
Donaldson (2018) on agricultural trade in the context of developing economies.22

20The downstream-river-equivalent distance measure specified by (22) implicitly assumes the constant slope ev-
erywhere. Moreover, going upstream may need more fuel and thus upstream costs may be higher than accounted
for by travel time. Using a value of upstream cost higher than the estimate amplifies our core story. Future work
will construct a more sophisticated measure of the effective distance that takes river orientations with slopes in
each travel route and fuel costs into account.

21Under alternative specifications (i.e., alternative controls, instruments, and methods for selecting the tuning
parameter of LASSO), estimates of σ range around [2.4, 3.3] and those of σ̄ range around [0.63, 0.8]. Subsequent
results with different values of (σ, σ̄) are qualitatively robust.

22Donaldson (2018) estimates this parameter by a gravity equation using data on quantities of agricultural
commodities traded internally in India during 1882-1920. His empirical setting has a similarity to ours because
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5.2 Model Inversion to Recover Productivity Composites (Step 2)

Given the parameters obtained in the previous step, we invert the model to obtain productivity
composites of all the sectors and wages ({Ão,Ag, o ∈ R̃}, {Ão,Nr, o ∈ R̃}, Au,M, {wo, o ∈ Ĩ})
that rationalize the observable data (sectoral employment share and total population in each
location) as a spatial equilibrium. In each basin, we use 2|R̃|+ 1 + |Ĩ | (= 3|Ĩ | − 1) equations
with the observables to solve for 2|R̃|+ 1+ |Ĩ | unknowns, where R̃ is the set of rural locations
that have positive populations. We observe sectoral employments in grid cells of rural locations
and total populations in the urban centers.23 The 2|R̃| + 1 + |Ĩ | equations involve sectoral
labor market clearing in all locations and utility equalization across space, expressed by (11),
(12), (13), and (15). The 2|R̃|+ 1 + |Ĩ | unknowns are the productivity composites and wages.

The model inversion reduces to a nested fixed point problem. The algorithm is described in
Appendix C.3. By the construction of the inversion problem, the model perfectly fits the data
of sectoral employment.24 Proving the uniqueness of the solution to this inversion problem
follows Michaels et al. (2011).

5.3 GMM Estimation of Density Externality Parameters (Step 3)

Using productivity composites obtained in the previous step as data and exploiting exogenous
river shape, we employ the GMM to estimate parameters governing the density parameters.
We first estimate the parameter governing density externalities in agriculture using both grid
cell-level model-driven data and community-level information of forest cover. We then estimate
congestion externality in natural resource extraction.

Table 3 summarizes the estimation results of these parameters. Below we describe each step.

5.3.1 Density externalities in agriculture

Net agglomeration externality in the productivity composite in agriculture

The inverted productivity composite of agricultural production is Ão,Ag ≡ Ao,Ag A(1−γ)θ
o,L N

µ̃Agθ

o,Ag κθ
1.

Taking the logarithm yields the following linear empirical specification:

ln Ão,Ag = µ̃Agθ ln No,Ag + X′oβ + φB + εo,Ag (16)

agriculture constituted a significant share in India’s economy during this period. Moreover, this parameter value
is in the standard range of estimates from developing countries in the literature and is higher than estimates
from developed countries. Given that our study area is narrower than the usual context (e.g., a single country),
comparative advantage may play a smaller role and the geography exerts a stronger force than in other settings in
the literature. However, larger values of θ will amplify the main results and will not change the core story of this
paper.

23See Appendix B.1 for the construction of the sectoral employment shares.
24The calibrated productivity composites are correlated with non-targeted data and moments. For example,

panel (A) of Table A.1 reports a significant positive correlation between the reported number of species found
around a community (from the CC data) and the calibrated productivity of the natural resource sector.
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where ln No,Ag is the logarithm of agricultural employment at location o, Xo is a vector of geo-
graphical controls that can be regarded as exogenous productivity fundamentals (including the
constant)25, φB represents basin fixed effect, and εo,Ag includes unobservable factors in Ao,Ag

and Ao,L. ln No,Ag is likely to be endogenous in this econometric specification, since the produc-
tivity fundamentals (Ao,Ag and Ao,L) affect the agricultural population in the theoretical model.
That is, agricultural labor demand would be higher at locations that have higher productiv-
ity fundamentals, but unobservable elements captured in εo,Ag might remain. To estimate the
coefficient of interest, µ̃Agθ, we instrument ln No,Ag by ln RNAo. RNAo is the “river network
access” measure at o defined by:

RNAo = ∑
d∈RC

τ−θ
od (17)

where RC is a set of all river cells in the basin (cells that contain a river) whether or not they
have positive populations.26 Column (1) of Table A.2 presents the first-stage regression result
and that RNA significantly predicts the current agricultural population.

In addition to the river structure being pre-determined and unaffected by human settle-
ments, we need the following identifying assumptions. The independence assumption is that,
after controlling for own-location characteristics, productivity fundamentals are uncorrelated
with accessibility to other locations. The corresponding moment condition is E[εo,Ag ln RNAo] =

0. The exclusion restriction is that market opportunity (due to the accessibility to other loca-
tions) affects productivity only through its effect on employment and thus through externalities
that arise.

Figure 8 provides intuition behind these identifying assumptions. This figure represents
three similar areas inside a river basin. We focus on the relationship between agricultural
population and productivity by comparing the three cells with different colors (pink, red, and
brown) that are located next to the bottom-left cells. We assume that these three cells have the
same observable productivity fundamentals (e.g., soil types, distance to the nearest river point,
lake size, elevation, flood risk) that affect labor demand. The only observable difference be-
tween these cells in this figure is RNA, that is, the weighted accessibility to other cells that face
rivers (whether or not these cells have positive populations). The middle and right maps have
one more river cell than the left map, each in a different location. Therefore, RNA is higher in
the red and brown cells than that in the pink cell. Comparing the red cell in the middle map
with the brown cell in the right map, RNA is higher in the brown cell because the additional
cell next to the top-right is located closer to the brown cell. This variation in RNA, stemming
from the river shape in nature, is regarded as a shifter of market potential. That is, RNA af-
fects the population size through the output trade mechanism, resulting in the agglomeration

25The geographical controls include a dummy of high river orders (4 and 5), distance to the urban center,
distance to the river, squared distance to the river, interaction terms of these two variables with a river cell dummy,
elevation, river confluences, flood vulnerability, soil conditions, and water shares (main and non-main channels).
We provide definitions of these variables in Appendix B.3.

26For RNA, we use the sector-independent symmetric proximity measure τod = Dδ
od where Dod is the travel

distance without taking the river asymmetry into account and δ is obtained from price gaps pooling all the sectors.
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externality. There are still unobservable productivity shifters remaining in the own location.
Rivers around a location and water level fluctuations may also affect unobservable soil quality
directly. However, there would be no theoretically plausible reason to believe that, given the
same observable geographical conditions in the own location, the unobservable productivity
shifters are associated with the variation in RNA that can be generated by exogenous river
shapes in locations far away from the own location. The comparison between the three panels
illustrates this point. Another threat to this identification is that a higher RNA may also fa-
cilitate importing intermediates, which increases productivity. However, most (though limited
in this area) intermediate inputs are imported from the rest of the world and from the urban
center, and we are also controlling for the river travel distance to the urban center from each
community to justify our identification assumptions.

Holding observable productivity fundamentals fixed in this stylized example corresponds to
controlling for observable geographic characteristics in the actual estimation. Panel (A) of Table
A.3 reports that, given a subset of geographical controls,27 RNA is uncorrelated with potential
productivity shifters: the share of water other than main channel rivers, river confluences,
flood vulnerability, and soil conditions unrelated to rivers. These non-correlations imply the
plausibility of assuming that RNA is also uncorrelated with other unobservable productivity
shifters given the rich set of full geographical controls, although there is no formal way to prove
this claim.

Furthermore, although the theoretical model is static, the agglomeration effect in the empir-
ical setting could contain the effect of past history of human settlement in a particular location
(e.g., accumulation of knowledge). Even if predetermined productivity fundamentals are the
same, locations with longer histories may attract larger populations today through agglomer-
ation spillovers over time. That is, if early settlements are not correlated with productivity
fundamentals, then they would affect current productivity only through their effects on current
populations caused by the agglomeration spillovers over time.

Motivated by this conjecture and supported by the subsequent arguments, we also construct,
as an instrumental variable, a dummy for whether the community was established in its current
location by 1940. Importantly, the primary reason for early settlement was the opportunity to
obtain natural resource products. The rubber boom, which began in the late 19th century
but collapsed around 1940, had a significant impact on initial settlements (Barham et al. 1996;
Coomes 1995). Moreover, even after the collapse of the wild rubber economy, the primary
activity of many communities was initially natural resource extraction and then has shifted
towards agriculture over time (Coomes et al. 2016). Therefore, it would be plausible to assume
that the locations of communities established before 1940 were determined primarily by natural

27The geographical characteristics controlled in this panel includes elevation and river characteristics including
distance to the river, share of main channel rivers, and floodplain soil share. The share of main channel rivers is
controlled as it could be theoretically correlated with RNA: RNA may be higher where the share of main channel
river water is higher, possibly because such larger river lines tend to be located in the central area of a basin. The
floodplain soil share is controlled because floodplain soils are formed along whitewater rivers, which may also be
mechanically correlated with RNA.
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resource endowments, not by advantages in agricultural productivity.28

The data also support the validity of using this instrumental variable. Column (2) of Table
A.2 presents the first-stage regression result and that the early settlement significantly predicts
the current agricultural population. Moreover, panel (B) of Table A.3 reports that, given a
subset of geographical controls,29 the early settlement location is uncorrelated with potential
agricultural productivity shifters: the share of water (both main channel rivers and non-main
channels), flood vulnerability, and all of the three soil quality variables. This randomness
implies the plausibility of assuming that the early settlement location is also uncorrelated with
other unobservable productivity shifters given the rich set of full geographical controls.

Table A.4 reports the IV estimation results and confirms the presence of the agglomeration
externality in the agricultural sector. Columns (2) and (3) report that the point estimate of µ̃Agθ

is positive and statistically significant with either RNA or the historical community existence as
an IV. The point estimate is larger with the historical IV. This difference would be because the
latter estimate contains more of the agglomeration spillover from the history of human settle-
ments. In our preferred specification, we use both IVs given that these two IVs exploit distinct
variations that influence contemporary populations. The right two columns in Table A.2 indi-
cate that these two instruments are uncorrelated both unconditionally and conditionally on the
geographic controls. This combination also achieves a significant first stage fit (column (3) of
Table A.2). In this preferred specification (column (4) of Table A.4), the point estimate µ̃Agθ is
0.501 at the 1% level of statistical significance. The J-statistic of the overidentifying restrictions
J test fails to reject the null hypothesis that the instruments are valid (p-value = 0.648). Divid-
ing the IV estimate by θ̂, we obtain the reported point estimate ˆ̃µAg = 0.064 (standard error =
0.010) in Table 3. This result confirms the presence of agglomeration externality in the agricul-
tural sector on net. That is, this result implies that the agglomeration externality in agricultural
production outweighs the congestion externality in land access. Table A.4 also shows that the
OLS estimate is larger than the IV estimate in any specification. This observation is consis-
tent with the view that agricultural employment is correlated with agricultural productivity
unobservable by econometricians and thus the OLS estimate has an upward bias.

The result is robust to different sample selections and different sets of geographic controls.
In particular, this result is not driven by a small number of locations with very large popu-
lations or by a specific set of geographical control variables. Columns (5) through (8) report
the estimation results by restricting the sample locations to only those with small populations
(e.g., < 1, 000). While the point estimates are slightly smaller, the statistical significance of the
agglomeration externality remains the same. Moreover, Table A.5 presents that the significance
(both statistically and economically) of the agglomeration externality is stable across different

28For this reason, it is not valid to use this instrument for estimating the density externality in natural resource
extraction in section 5.3.2.

29The geographical characteristics controlled for in this panel includes elevation and basic river characteristics
such as river proximity and river confluences. River confluences are controlled because we expect that such
locations may have higher accessibility to various destinations and thus attract people for reasons unrelated to
agriculture.
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combinations of the geographical control variables.

Decomposition into congestion externality in forest clearing and agglomeration externality
in agricultural production

Recall from section 4.3 that µ̃Ag ≡ µAg − (1 − γ)µL. That is, the overall agglomeration in
agriculture based on the estimation in the previous step consists of both congestion externality
in forest clearing and agglomeration externality in agricultural production.

To decompose the net density externality into these two components, we first estimate the
parameter governing congestion externality in forest clearing, using community-level (not grid
cell-level) information. We use community-level information because it is ideal to have the in-
formation of deforestation and associated population that caused it. It is not feasible to identify
the population that caused each deforestation area with the grid cell-level data. Note also that
in the estimation of density externality in forest clearing, we do not use any information from
solving the model. This is another reason why we do not have to stick with using the grid
cell-level data. In particular, we use information of the community-level land footprint after
clearing the primary forest within each voronoi polygon around the settlement, constructed by
Coomes et al. (2021) and shown in Figure A.11. This community-level land footprint contains
all patches of agricultural fields and secondary forests detected in satellite images.

The land access function (3) and No,L = (1− γ)No,Ag at the optimal input choice yield the
following empirical specification:

ln
Lo

No,Ag
= −µL ln No,Ag + X′oβ + φB + εo,L (18)

To estimate µL, we follow the same identification strategy as above. The same identifying
assumption holds because the residual in (18) is also contained in the residual in (16). Therefore,
we use exactly the same set of IVs and geographical controls. Table A.6 reports the results. We
obtain the point estimate µ̂L = 0.522 (standard error = 0.094).

From µ̂L, ˆ̃µAg, and the relationship µ̃Ag ≡ µAg− (1−γ)µL, we back out the point estimate of
the agglomeration externality in agricultural production (given the land cleared for agriculture)
µ̂Ag = 0.273 reported in Table 3.

5.3.2 Congestion externality in natural resource extraction with Spatial Spillovers

The inverted productivity composite of natural resource extraction is Ão,Nr ≡ Ao,Nr[∑d D−ν
od Nd,Nr]

−µNrθ.
By taking the logarithm, we can express the residual variation in ln Ao,Nr (productivity funda-
mentals) as follows:

εo,Nr = ln Ão,Nr + µNrθ ln
(
∑
d

D−ν
od Nd,Nr

)
− X′oβ− φB (19)
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Likewise, employment of natural resource extraction in the own and surrounding locations is
likely to be endogenous. Following a similar identification strategy as Ahlfeldt et al. (2015), we
thus estimate the congestion externality parameter (µNr) and its spatial decay parameter (ν) by
non-linear GMM with the instruments plausibly satisfying the following moment conditions:

E[εo,Nr ln RNAo] = 0 and E[εo,Nr ln( ∑
d|Do,d≤x

RNAd)] = 0, x ∈ X (20)

Panel (B) of Table 3 reports the results of the nonlinear GMM estimation. We select our
instruments with X = {2, 5, 10, 25, 50, 75, 100}. The point estimates and standard errors are
based on the two-step estimation using the optimal weight matrix. We construct the optimal
weight matrix using the first-step estimates of the parameters that were estimated using the
identical matrix as a weight matrix. We get the point estimate of the congestion externality
parameter µ̂Nr = 0.335 (standard error = 0.042) with the spatial decay parameter ν̂ = 0.593
(standard error = 0.075). Given the number of instruments, these parameters are over-identified.
We report the result of the overidentifying restrictions J test. The resulting J-statistic fails to
reject the null hypothesis that the instruments are valid (p-value = 0.821).30

To understand the natural resource competition realistically—that is, to understand the ac-
tual distance where spatial spillovers of congestion externality in natural resource extraction
are strong—we first approximate the productivity composite by the following:

Ão,Nr ≡ Ao,NrN−µNrθ
o,Nr ∏

x∈X

[
∑

d|Do,d≤x
Nd,Nr

]−µNr,xθ

and employ a linear specification to estimate µNr and {µNr,x} with instruments ln RNAo and
ln ∑d|Do,d≤x RNAd for x ∈ X . Table A.7 reports results with different X s, but they are subsets
of X used for the main non-linear estimation.

There are two noteworthy findings. First, the negative effect of a population engaging in
natural resource extraction in the own location becomes weaker both economically and signifi-
cantly compared with the effects of surrounding populations once we also consider them with
wider distance ranges. This empirical pattern is consistent with the presence of congestion
externality with spatial spillovers. Interestingly, once we control for surrounding populations
with comprehensive distance ranges, the coefficient sign of the own population even becomes
positive. This observation is consistent with the view that there is also an agglomeration benefit
as we saw in the agricultural sector even though the congestion force outweighs on net. Note
also that the OLS estimate of the coefficient of own population is larger than the IV estimate.
This observation suggests that employment of natural resource extraction is correlated with its
unobservable productivity and thus the OLS estimate has an upward bias.

Second, as we increase the number of distances in X , the size of point estimate µ̂Nr,xmax

30The point estimates from the first and second steps of the GMM are very close. Moreover, we are also working
on the iterative GMM estimation (Hansen and Lee 2021) and the result will be available soon.
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gradually decreases. All of their signs remain the same up to xmax = 100, but this regular
pattern diminishes with x = 150. This empirical pattern implies that the strength of congestion
externality has spatial decay. Moreover, this observation justifies our choice of instruments in
the main non-linear estimation, exploiting the variation from surrounding populations up to
x = 100.

There is a concern that deforestation also negatively affects biological resource endowments
(Barlow et al. 2016; Giam 2017). That is, there may also exist the across-sector externality—the
effect of clearing forests for agriculture on the productivity of the natural resource extraction
sector.

However, in the context of our study, we are focusing on the first-order direct effects of
the population engaging in the natural resource sector on natural resource depletion and not
incorporating the across-sector externality. We have three comments on this decision. First,
the main reason for this decision is that the spatial extent of these sectors’ activities is distinct
in our study area. Deforestation for agricultural land is mostly distributed along the rivers.
The mean, median, and maximum land footprint depths among the rural communities in our
study area are about 1 km, 0.85 km, and 5.5 km, respectively. The land footprint depth rep-
resents the distance from the river to the furthest inland point in the community-level land
footprint within a voronoi polygon around the settlement detected in satellite images (Figure
A.11). In contrast, the spatial extent of some natural resource extractions (hunting wild ani-
mals and collecting forest products) is much broader, including deep inland areas away from
the river where forests are not cleared at all. In addition, fishing is obviously conducted on
the river without forests. Second, natural resource endowments are not significantly correlated
with the community-level land footprint. Panel (B) of Table A.1 reports the correlation between
the community-level land footprint and the number of species found around the community
(reported in the CC data). Column (1) reports that the number of total species pooling all types
of extractive activities is not significantly correlated with the land footprint. Columns (3)-(5)
imply that the land footprint is not significantly correlated with resource endowments for any
inland extractive activities (timber; NTFP; game). The significant negative correlation between
the land footprint and the number of fish species (column (2)) may be reflecting that higher
fish endowments attracts more workers for fishing relative to agriculture, which results in the
smaller deforestation for agriculture, given that deforestation would not have direct effects on
the fish stock. Panel (C) of Table A.1 reports that the correlation between the land footprint
depth and natural resource endowments is also insignificant (except for timber). Third, al-
though the data support our model choice, it is not possible to formally prove the absence
of the across-sector externality. This model choice does not affect the inversion problem, but
affects outcomes in counterfactual policy simulations. We investigate policies that reduce to-
tal deforestation in a river basin in a later section. Therefore, we can interpret these policies’
welfare effects as lower bounds because the reduction in deforestation may generate additional
gains of natural resource endowments that our model is not accounting for.
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5.4 Quantifying the Effects of Density Externalities

We investigate the quantitative importance of the estimated density externalities in determin-
ing human welfare and environmental costs. The primary outcome variables at each basin
level are welfare of the population, total deforestation, and natural resource depletion. The
welfare measures is based on the real wage that is equalized across locations in the spatial
equilibrium.31 We define natural resource depletion in each basin as the total expected amount
natural resources extracted in the spatial equilibrium, denoted by Q (Nr). We also report the
counterfactual outcomes of total sectoral employment in the basin, denoted by N (Ag), N (Nr),
and N (Urban).

First, we focus on the agglomeration externality in agriculture. Given the total population
in each basin and the calibrated productivity fundamentals, we solve the model by shutting
down the agglomeration externality (µAg = 0). Note that we maintain the estimated congestion
externalities in forest clearing and natural resource extractions.

Panel (A) of Table 4 indicates that the agglomeration externality has large effects. Without
the agglomeration externality, deforestation increases by about 18–56%, but total agricultural
production decreases by about 29–35% from the benchmark equilibrium. The human welfare
decreases by about 7–13% without the agglomeration. However, the natural resource depletion
also decreases by about 1–3% without the agglomeration externality. That is, another trade-
off between two types of environmental costs remains—deforestation versus biological natural
resource depletion.

Figure 9 and Figure A.12 show spatial distributions of relative values of key outcome vari-
ables caused by this counterfactual experiment (in terms of those in the benchmark spatial
equilibrium) in the Upper Ucayali and Napo-Amazon river basins.32 As the upper middle
maps indicate, agricultural productivity decreases in all locations with the lack of agglomera-
tion force, since the productivity gains from concentration decline. According to the upper left
maps, there is a significant spatial reallocation of the agricultural population: it has increased
without the agglomeration externality in more than 80% of rural locations. This spatial reallo-
cation is from concentration into dispersion because the congestion externality in forest clearing
dominates. A sectoral reallocation of workers also occurs: the overall agricultural employment
increases (by 6.6% and 2.9%) and the overall employment for natural resource decreases (by
1.8% and 4.4%). This sectoral reallocation reflects general equilibrium effects. Since the agricul-
tural productivity has declined, the economy needs more agricultural employment to satisfy

31The real wage is equivalent to the indirect utility based on the specified utility function. Note also that the
value of indirect utility varies with monotone transformations of the utility function (that result in the same
observed endogenous variables). Therefore, while the real wage is uniquely determined, it is possible to construct
other welfare measures. Nevertheless, the sign of the welfare effect and the order of its magnitude in different
counterfactuals are uniquely identified, although the magnitude of the welfare value varies depending on how the
utility function is defined.

32To save space, we present maps from the two basins (Upper Ucayali and Napo-Amazon, which have the two
largest urban centers) out of the four basins throughout the counterfactual experiments. Maps from the other two
basins are available upon request.
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the demand for agricultural goods by the population, given that consumption demands across
the agricultural and natural resource goods are complementary.

Next, we focus on the congestion externality in natural resource extraction. Unlike the ag-
glomeration externality, shutting down or reducing the congestion externality is impractical,
given the finite nature of natural resource endowments. Therefore, we instead solve the model
by increasing the congestion externality in natural resource extractions. In particular, we in-
crease the congestion externality parameter (µNr) by 25% from its estimated value. Note that
we maintain the estimated agglomeration externality in agriculture and congestion externality
in forest clearing as well as the estimated spatial decay parameter in natural resource extrac-
tions.

Panel (B) of Table 4 indicates that the increased congestion externality also has large effects.
With the increased congestion externality, total natural resource depletion decreases by about
40–50% and human welfare decreases by about 11–30%. A sectoral reallocation of workers also
occurs: the overall agricultural employment decreases (by about 2–9%), the overall employment
for natural resource increases (by about 9–16%), and the overall employment in the urban center
decreases (by about 4–7%). This sectoral reallocation reflects general equilibrium effects and is
explained in the same way as in the case of shutting down the agglomeration externality above.

6 Mechanisms Underlying the Agglomeration Externality

We investigate mechanisms behind the density externalities that we found in the previous
section. Interpretation of the congestion externality in forest clearing or natural resource ex-
tractions is straightforward given its rivalrous nature. However, interpreting the agglomeration
externality in agriculture is not straightforward, and thus we examine its microfoundation.
This is also new to the literature because agglomeration has typically been discussed in urban
settings.

6.1 Economies of Scale in Transport and Transaction Costs

One hypothesis is that the cost of transporting products from a community decreases with
increases in the community’s production and export of the products. This mechanism could
be the case if large-scale commercial river boats (e.g., “lancha,” shown in the bottom-right
picture of Figure A.10) are more likely to stop by communities that export large amounts of
their products. The mechanism could also be the case if populations in larger communities
cooperate to invest in fast motor boats. Another simple possibility could be that the average
transport cost charged by an intermediary agent decreases with the amount of transported
products.33 In any of the ways, the actual transport costs could be endogenous depending

33Bartkus et al. (2022) find that a cooperative intervention to purchase large boats increases income in remote
fishing communities of the Brazilian Amazon through higher prices received in the selling market, which becomes
consistent with the proposed mechanism if higher concentration facilitates the collective investment. Foster and
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on the exporting community’s population. However, the model takes river transport costs as
given such that they depend only on distance and river orientations based on the most widely
available transport mode (peque-peque, shown in the top-right picture of Figure A.10).

Nevertheless, the present model with agglomeration externality in agricultural productivity
is indeed isomorphic to a model with endogenous transport costs as long as the endogeneity
stems from the population of an exporting community; that is, the transport cost depends on
an origin-specific endogenous factor. To see this point, consider the following model. Suppose
that there is no agglomeration externality in agricultural productivity such that we replace (4)
with the following agricultural production function:

Qo,Ag(j) = zo,Ag(j) · No,C(j)γLo(j)(1−γ), o ∈ R

while keeping the same land access function as (3). Suppose also that the trade cost of agricul-
tural products is characterized as:

τ̃od,Ag = N
−µAg
o,Ag τod,Ag (21)

where τod,Ag is the exogenous term of trade cost defined by (8) and µAg > 0 such that the
trade cost decreases with the agricultural employment. These assumptions lead to the same
expenditure share across locations within the agricultural sector as (9).34 This model thus
leads to the same set of spatial equilibrium conditions. Therefore, the inverted productivity
composites could contain the endogenous term of trade costs.

The CC data allow us to test this hypothesis. Panel (A) of Table 5 reports the results of esti-
mating the scale effect on the availability of different transport modes in a community. First of
all, according to column (8), the mean value of peque-peque availability is close to one (0.972)
and much higher than the availability of the other three transport modes. This observation
justifies our decision to calculate the asymmetric trade cost based on peque-peque, the most
widely available mode. Next, according to columns (2), a 1% increase in the agricultural em-
ployment increases the probability of lancha being available in the community by 0.14% at the
1% level of statistical significance. As the primary purpose of lancha is to carry products, this
result is consistent with our hypothesis.

Panel (B) of Table 5 shows the scale effect on the frequency of these transport modes avail-
able. According to column (2), the mean number of days per week when lancha is available

Gafaro (2017) also report a consistent finding that the economies of scale in transport technology allow small-scale
farmers to shift from subsistence to market participation.

34To see this isomorphism,

πod,Ag =
Ao,AgN

−(1−γ)µAgθ

o,Ag κθ
1(wo τ̃od,Ag)

−θ

∑o′∈R Ao′ ,AgN
−(1−γ)µAgθ

o′ ,Ag κθ
1(wo′ τ̃o′d,Ag)−θ

=
Ão,Ag(woτod,Ag)

−θ

∑o′∈R Ão′ ,Ag(wo′τo′d,Ag)−θ
, o ∈ R, d ∈ I

where Ão,Ag is same as (10).
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is 3.429. Lancha is a large commercial boat and is not generally owned by each small-scale
community. We thus interpret this value in a way that lancha passes a community about half
a week on average. This column reports that a higher agricultural employment significantly
increases the number of days when lancha is available to the community. This result is also
consistent with our hypothesis of the scale economy in transport costs.

A related mechanism is that other transaction costs decrease as population size increases,
which is also consistently explained by the specification of (21). According to column (6) of
panel (A) of the same table, the probability of “rapido” (a commercial speedboat shown in the
bottom-left picture of Figure A.10) being available in the community also increases by 0.06% at
the 10% level of statistical significance. In contrast to lancha, the primary purpose of rapido is
to move people around. Therefore, this result does not seem to be closely relevant to the scale
economy in transporting products. This result is instead consistent with the scale economy in
transaction costs through various possible mechanisms. For example, in communities accessible
by such a speedboat, contracts with intermediaries of commodity trading may be facilitated.

Table A.8 adds a more direct argument. According to this table, probabilities that a river
trader is available to the community, the community population is contracted to selling a prod-
uct, or there are contractors living in the community are significantly higher with a higher
community population.35 Although we do not directly observe activities of these interme-
diaries, a straightforward interpretation is that their presence decreases transaction costs for
selling community’s products.36

6.2 Economies of Scale in Agricultural Intensification

Another hypothesis is that there are economies of scale in accessing agricultural inputs. The
2012 CENAGRO allows us to test this hypothesis. Table 6 reports the scale effect on the
household-level use of various agricultural infrastructure, technology, and inputs into land
and crops in the communities in our study area.

Modern technology is limited in the Peruvian Amazon. We pick all the related variables
available in CENAGRO that have non-missing information. All the variables are dummies. The
mean value is less than 0.1 for all the variables (i.e., less than 10% of agricultural producers
use them) with one exception for boat/canoe/speedboat having about 0.6. Moreover, the mean
value is less than 0.01 for 13 items (out of 24).

In this limited environment of available agricultural inputs, we nevertheless observe the
scale effect on some technologies and inputs. For example, the effects on some direct inputs
into land and crops (fertilizers, insecticides, herbicides, and fungicides) as well as on their com-
plementary equipment (sprayers) have higher point estimates than others at the 1% or 5% level
of statistical significance. We also see a significant scale effect on the use of crop processing

35Table A.9 reports product-specific contracts.
36Investigating the incidence between traders and community population (e.g., Atkin and Donaldson 2015;

Bergquist and Dinerstein 2020) is not feasible with our data. Future work is warranted in this research area.
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technology (grain mill). Since grain mills facilitate processing raw grains into marketable prod-
ucts, this result is broadly consistent with the previous finding of the economies of scale in
improving trade environment.

The CC data from PARLAP collect detailed information on the form of seed acquisition.
The people in the community are asked whether they obtain their seeds or other planting
materials from others in the community, from people in other communities, or from a city.
They are also asked about the principle form of acquisition if they obtain seeds from other
places. Table A.10 reports the results. The point estimates reported in panel (A) imply that as
the community population increases, people in the community are more likely to obtain crop
seeds from others in the community and less likely to obtain them from a city or from other
communities,37 although the statistically significance is not strong. According to panel (B) of
the same table, the form of transaction (market or non-market transaction) when people obtain
seeds from outside the community does not significantly vary in the community population.38

To summarize, we find suggestive evidence of the economies of scale in accessing agricultural
inputs. Given the very low rate of adopting modernized agricultural technologies and inputs,
however, the economies of scale in trading products is revealed to be the primary mechanism
underlying agglomeration in the quantitative sense.

7 Counterfactual Experiments

Counterfactual experiments investigate environmental protection policies as well as improving
infrastructure and technology to design the “win-win policy” that increases both human and
ecological well-being. The set of primary outcome variables at each basin level is same as in
section 5.4. We define a win-win policy as the policy that achieves the following three out-
comes: human welfare is increased, total deforestation is decreased, and total natural resource
depletion is decreased.

Note that a counterfactual experiment requires solving the model and obtaining population
distributions in a new spatial equilibrium. In the presence of externalities, it is not feasible to
prove the uniqueness of the equilibrium. To address this issue, throughout the counterfactual
experiments we use the same simulation algorithm, described in Appendix C.3, with the aim of
reaching the spatial equilibrium closest to the benchmark equilibrium given the set of populated
locations. We have also tried to solve the model with various combinations of initial guesses to
search for multiple equilibria, but have not found any equilibria other than those presented in
the following results.

37Table A.11 reports crop-specific results and that this effect largely stems from maize and plantain.
38Market transactions include purchasing and borrowing. Non-market transactions include exchanging, donat-

ing, and giving.
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7.1 Protection Policies

In this section, given the fixed number of total population and estimated density externalities,
we ask the following questions: is it beneficial to concentrate the ecological footprint in fewer
spots rather than to have many small communities? If so, how do different ways of setting
protected areas and encouraging resettlement from the protected locations affect welfare and
outcomes? To approach these questions, we implement the following protection policy experi-
ments. We simulate the model to derive endogenous outcomes given the additional condition
imposed by each experiment. Note that the model does not incorporate the cost of associated
resettlements (or a subsidy to compensate for them) in response to policy interventions. There-
fore, implementing a cost-benefit analysis of a single policy intervention is beyond the scope of
this paper. To interpret and compare policy outcomes meaningfully, we thus conduct multiple
policy experiments, each directly treating an equal size of population. We design each policy
such that it directly treats 2.5% of rural populations in the benchmark equilibrium in each basin
for resettlement.

(A) Protecting the rural frontier

We first present another fact about the spatial distribution of community locations.

Fact 1B: The formation of new rural communities occurs not only by the rural frontier ex-
panding but also by the interior of the rural frontier filling in

We define the rural frontier in each river basin as the rural settlement that takes the maximum
distance from the urban center (represented by a square in each map of Figure 3). Beyond the
rural frontier, the land is covered by forests and no human settlements are assumed. Figure
A.1 and Figure A.2 show the establishment of communities in the Napo-Amazon and Upper
Ucayali basins over decades. These maps illustrate that the rural frontier expanded during
most of the two-decade intervals. This process is consistent with the explanation provided by
the classical model of dynamic city formation (Fujita and Krugman 1995; Fujita et al. 1999),
which argues that the agricultural frontier expands as the population grows. In contrast to
the assumption in the classical model that areas inside the agricultural frontier are filled with
farmers and farmlands, we also observe the formation of new communities as the interior of
the rural frontier fills in during most periods. Since our model is static, modeling this complex
dynamic process of rural community formation is left for future research. Nevertheless, this
fact motivates the question of what happens to the spatial distribution of economic activity and
environmental costs when some protection policy controls the expansion of the rural frontier.

We consider a place-based protection policy of controlling the expansion of rural frontier.
This simulation chooses rural locations to be treated in order, starting with those farthest from
the urban center, until the treated population reaches 2.5% of the total rural population in each
basin.
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Panel (A) of Table 7 reports the results. In the Upper Ucayali basin, total deforestation has
decreased by 2% with a very small decrease in welfare (0.2%). Similar results follow in the
other three basins. Intuition behind these results is as follows. In the presence of congestion
externality in clearing forest, total deforestation decreases by reducing the number of popu-
lated locations while fixing the total population size. The capacity of agricultural production is
affected, depending both on the decreased amount of land inputs and the increased productiv-
ity gain due to the agglomeration externality in agricultural production. The minimal welfare
effect implies that these two forces almost cancel each other out.

This policy has also reduced natural resource depletion (in three of the four basins). In the
Upper Ucayali basin, total natural resource depletion has decreased by 0.8%. Intuition is as fol-
lows. With the protected areas targeting the rural frontier, the overall scope of natural resource
extraction activities is narrowed. This policy increased the overall population density in the
basin as it relocated the population closer to the urban center. This reallocation means that the
surrounding populations increase in most of the populated areas. Therefore, the overall pro-
ductivity of the natural resource sector would be negatively affected because of the congestion
externality with spatial spillovers. As a result, the total outputs of the natural resource products
decrease (i.e., natural resource depletion is reduced), which is an ecological benefit.

Figure 10 and Figure A.13 show spatial distributions of relative values of key outcome
variables caused by this counterfactual experiment (in terms of those in the benchmark spatial
equilibrium) where red x marks indicate the treated locations whose residents resettled to other
locations. We will discuss these maps later when we compare the counterfactual outcomes
between different protection policies.

(B) Not allowing new community formation

We next implement a simple experiment of not allowing new community formation. In this
experiment, we simply evaluate economic and environmental outcomes with the same total
population but without new community formation. This experiment chooses rural locations
to be treated in reverse order of establishment, starting from the most recently established
communities, until the treated population reaches 2.5% of the total population in each basin.
We then solve the model with the rest of the communities established earlier given the total
population.

Panel (B) of Table 7 reports the results. In the Upper Ucayali basin, total deforestation de-
creases by 3% with a small decrease in welfare (0.1%). Similar results follow in the other three
basins. The welfare outcome is almost the same as in the previous experiment. This exper-
iment has also reduced deforestation with a similar mechanism to the previous experiment.
Compared with the previous experiment that protects the rural frontier, however, the forest
cover gain is larger. After presenting the next experiment, this difference in the forest cover
gain will be discussed.
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(C) Minimum population threshold to form a community

We also consider a place-based experiment of specifically targeting small communities. This
experiment chooses rural locations to be treated in order, starting with the location with the
smallest population size, until the treated population reaches 2.5% of the total population in
each basin. We then solve the model with the rest of the locations, keeping the total population
in each basin fixed.

Panel (C) of Table 7 reports the results. The welfare outcome is almost the same as in the
previous experiment. However, targeting residents of the smallest communities for resettle-
ment leads to a higher gain in preserving forest cover. In all four basins, this policy has the
largest negative deforestation impact among the three experiments. This policy has reduced
deforestation by 7.3% in the Upper Ucayali basin and 13.1% in the Napo basin. The right five
columns in (B) and (C) indicate that the outcomes of sectoral reallocation of the population
and sectoral outputs are almost the same as in the previous experiment (except for the Lower
Ucayali basin). Therefore, the forest cover benefit relative to the previous experiment arises
without sacrificing other objectives. This benefit primarily stems from the agglomeration and
congestion externalities. This experiment reduced communities that had both low congestion
in accessing land and low agglomeration benefit for agricultural production and caused the
population to enjoy more agglomeration externality after resettlement. The resulting increase
in productivity due to the agglomeration externality compensated for the increased congestion
for land access. Figure 11 and Figure A.14 show spatial distributions of relative values of key
outcome variables caused by this counterfactual experiment (in terms of those in the benchmark
spatial equilibrium) where red x marks indicate the treated locations whose residents resettled
to other locations.

A comparison between policies (A) and (C) illustrates that policymakers face a trade-off in
mitigating different types of environmental costs: deforestation and depletion of other natural
resources. The protection policy that targets the smallest communities (C) reduces deforestation
more than the frontier protection (A), but increases natural resource depletion. A comparison
between the bottom-middle maps of Figure 10 and Figure 11 indicates the primary source of
these contrasted outcomes from the two experiments (A) and (C). These two maps report that
the productivity of the natural resource sector (relative to its original values) becomes smaller
than 0.96 for more than 80% of the remaining locations by protecting the frontier (A), while it
becomes larger than 0.97 for all of the remaining locations by this experiment (C).

We of course understand the feasibility and ethical concerns of resettling populations in the
smallest communities that already exist. This experiment nevertheless generates an important
policy implication. This experiment can indirectly suggest the importance of regulating new
community formations to minimize deforestation. For example, one policy idea might be to
regulate the formation of new communities with a threshold of minimum settlement size. In-
deed, the deforestation impact in the previous experiment (B) of not allowing new community
formation is smaller than in this experiment (C) but larger than in the experiment (A) of protect-
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ing the frontier (in three of the four basins). This fact reflects that newly formed communities
includes more small-scale communities than those locating near the frontier.

7.2 Improvement of River Transport Infrastructure

We consider improving the transport infrastructure that aims to reduce high trade costs in
the environment of Amazon river networks. The high trade costs primarily stem from the
asymmetry of transport costs due to river orientations, the seasonality of transport costs due
to water level fluctuations, and the slow speed of river boats. Recall (22) where we defined
the downstream-river-equivalent kilometers along the lowest-cost route. With the improved
transport infrastructure, the downstream-river-equivalent distance is expressed as follows:

Dod = Dod,initial,down + λupDod,initial,up + λlandDod,land + λupgradedDod,upgraded (22)

where Dod,upgraded corresponds to the upgraded part of the river transport network. Dod,initial,down

and Dod,initial,up correspond to the portions of the river transport network that are not upgraded.
Specifically, we consider the quality improvement of boats and river dredging as the im-

provement of river infrastructure. In the model, the infrastructure improvement has two ele-
ments. The first element is that there is no asymmetric cost in the upgraded part. The second
element is that the travel cost of the upgraded part decreases. To capture this effect, we set
λupgraded = 0.8. These two elements are indeed consistent with the trajectory of transportation
infrastructure development in the Peruvian Amazon over time.39 River dredging is a comple-
mentary devise for reducing transport costs as it enables larger ships to travel.40

Table 8 reports the results of a variety of experiments. Reducing the trade costs increases
human welfare in all the cases; however, the effects on environmental costs are heterogeneous
across different ways of improving the transport infrastructure.

Infrastructure investments that make the areas enjoying agglomeration externalities more
even across the basin are preferable in terms of reducing deforestation

We first focus on the agricultural sector and the deforestation impact. Figure 12 shows locations
of transport infrastructure improvement along river lines according to river orders. Higher river
orders mean more splits from the central river.

39For example, canoes, row and sail boats, and steamers were the primary means of river transportation during
1860-1940. Using historical records on travel time (e.g., Herndon and Gibbon 1853; Paz Soldan 1877; Schurz et al.
1925) and the same approach described in Appendix C.2, we estimate that the value of the upstream cost parameter
(λup) is 2.37 in this historical period. This value is close to double the estimated value λ̂up = 1.282 for the modern
period. That is, the cost of the asymmetry of river orientations is decreasing over time. Also evident is the increase
in speed over time. Meanwhile, the exact speed increase of a next generation boat is ambiguous. Therefore,
λupgraded is set arbitrarily. Smaller values of this parameter amplify the reported results of the counterfactuals.

40The Amazon Waterway is an ongoing project (but started after our data collection) that dredges rivers. See,
for example, Abizaid et al. (2022) and Lu (2019) for more details. We are currently working on incorporating a
potential negative externality of dredging rivers on fish stock, which affects the productivity of the natural resource
sector.
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Panel (A) of Table 8 reports the results of improving the transport infrastructure in a way
that hinterlands are connected to the central area of a basin (by targeting river lines with river
order 2). In all basins except Lower Ucayali, total deforestation is decreased by this experiment.
Figure 13 and Figure A.15 show spatial distributions of the key outcome variables caused by
this counterfactual experiment. As hinterlands become more integrated in the trade network,
we observe spatial reallocation of farmers toward remote areas compared with the benchmark
equilibrium (the top-left maps). Farmers in the remote areas enjoy more agglomeration ben-
efits. The top-middle maps show agricultural productivity gains in remote areas. Given the
congestion externality in forest clearing, deforestation per farmer decreases in remote areas.
The reduction of total deforestation in the basin means that this forest gain in remote areas
outweighs the forest loss in denser areas.

Panel (B) of Table 8 reports the results of improving the transport infrastructure only in
densely populated areas (by targeting river lines with river order 1 in the case of Napo basin).
In contrast to the previous case, total deforestation increases. Figure 14 shows spatial distribu-
tions of the key outcome variables caused by this counterfactual experiment. The agricultural
population is more concentrated in the central area of the basin (the top-left map). Due to the
density externalities, agricultural productivity increases and deforestation per farmer decreases
in the central areas. On the flip side, this policy also generates much smaller communities with
much higher deforestation per farmer in hinterlands. The increase in total deforestation in the
basin means that the latter effect dominates. From these two experiments, we learn that the
direction of deforestation impact depends on where in the spatial structure of river networks
the improvement takes place.

Additional experiments help to elucidate the importance of place-based targeting of infras-
tructure investments to mitigate environmental costs. Panel (C) of Table 8 reports the results
of improving the transport infrastructure in a way that combines both of the previous two ex-
periments (i.e., targeting river lines with both river orders 1 and 2 in the Napo basin). The
welfare increase is higher than the previous two experiments simply because this experiment
treats more river lines. The deforestation impact is between those of the previous experiments,
but much closer to the second experiment targeting dense areas. Panel (D) of Table 8 reports
the results of just reducing the asymmetry in all river lines. Total deforestation also increases
by uniformly improving the transport infrastructure across the basin.

To summarize, policy interventions that make the areas enjoying agglomeration externalities
more even across the basin are preferable in terms of reducing deforestation. In other words,
policies causing more even distribution of middle-sized communities across the basin are more
preferable than those causing a separation in the basin between highly concentrated locations
with agricultural intensification and very small communities in hinterlands with low produc-
tivity agriculture. This implication is also consistent with the finding in the previous section
that the protection policy targeting the smallest communities has reduced deforestation most.
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A sector-specific protection policy leads to an unintended consequence

We next focus on the natural resource extraction. Let us first focus on the experiment of target-
ing river lines with river order 2 (panel (A) of Table 8; Figure 13; Figure A.15). As hinterlands
become more integrated in the trade network, we observe spatial reallocation of this activity
toward remote areas from the benchmark equilibrium (the bottom-left maps). The degree of
this spatial reallocation is lower than that of agricultural population according to the compari-
son between the two maps on the left. This difference is due to the different extent of density
externalities between agriculture and natural resource extraction. Owing to the congestion ex-
ternality with spatial spillovers, productivity of the natural resource sector increases in remote
areas and decreases in the central dense areas (bottom-middle maps). Although these two op-
posing forces exist, the net depletion of natural resources increases in remote areas connected
by the improved transport infrastructure. The impact on total natural depletion in the basin is
ambiguous. It increases by 0.3% in Upper Ucayali, but it decreases in the other three basins.

To combat the natural resource depletion, a sector-specific protection policy such as ban-
ning hunting in specific location might be considered. However, the feasibility of such a policy
is unrealistic and even more difficult than resettlement policies. It would be more difficult to
monitor people’s activities than whether areas are inhabited. Therefore, as a more feasible pol-
icy, we consider checkposts to monitor traded goods in the improved transport infrastructure.
That is, we consider a protection policy of using the improved transport infrastructure only for
transporting agricultural and urban goods, but not for transporting natural resource products.
The trade cost of natural resource products is thus unchanged in this experiment.

Panel (E) of Table 8 reports the results of this experiment. In contrast to the policy objective
of protecting natural resources, it leads to an unintended consequence of increasing extractive
activities. In all four basins, the resulting natural resource depletion is higher in this policy
(panel E) than in the policy without the sector-specific checkposts (panel A). This unintended
consequence is primary driven by the sectoral reallocation of populations through general equi-
librium effects. The overall relative productivity in the natural resource sector (in terms of the
amount of output that can be delivered to destinations through trade) is diminished because
of the sector-specific restriction in trade. The economy thus needs more employment in this
sector to meet the consumption demand by the population, which increases the total depletion
of natural resources.

7.3 Toward External Validity and the Win-Win Policy

Conceptually, the set of counterfactual experiments derives an implication toward external va-
lidity. Counterfactual exercises based on a class of general equilibrium models often derive a
conclusion from a single economy (e.g., from one country/region based on economic geogra-
phy models or from one city based on a quantitative urban model that studies internal city
structure). In the context of our study, this practice corresponds to analyzing counterfactuals
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only from one of the four basins. However, the conclusions that can be drawn from this practice
may not be as conclusive as one might expect. Panel (A) of Table 8 illustrates this point. One
might conclude from the Napo basin (or Pastaza and Lower Ucayali) that the improvement of
transport infrastructure targeting river order 2 is a win-win policy because it increases welfare
and reduces deforestation and natural resource depletion. In contrast, the natural resource de-
pletion is increased in the Upper Ucayali basin even with the same model, the same parameter
values, and a similar study area (compared with other rainforest areas outside the Peruvian
Amazon). This example illustrates the caveat of deriving conclusions from a single economy.

Therefore, this study states conclusions if and only if primary outcomes from all four basins
are qualitatively same. Although it is still not perfect to argue the external validity, this way
would improve the credibility of policy implications compared with those derived from a single
economy. To achieve the win-win outcome, we consider a composite intervention that combines
the protection policy with the improvement of transport infrastructure. Table 9 reports results
of the composite counterfactual experiment that contains the following two components. The
first component sets protected areas that control the expansion of rural frontier by directly
targeting 2.5% of the total rural population in each basin. The second component improves the
transport infrastructure in a way that it connects hinterlands to the central area of the basin (by
targeting river lines with river order 2). Each component is exactly the same as in a previous
experiment. According to the table, this policy is win-win because it increases welfare by about
1–2.1%, decreases deforestation by about 1–7%, and decreases natural resource depletion by
about 0.5–2.4%. These outcomes imply that, while limiting the expansion of rural frontier,
connecting the given rural frontier with a central area by eco-friendly transport infrastructure
is preferable to simultaneously achieve multiple objectives that are seemingly trade-offs.

8 Conclusion

How can we design policies that improve both tropical forest conservation and local popu-
lations’ welfare? This paper argues that this question turns on the direction and magnitude
of density externalities in agricultural production, forest clearing, and natural resource ex-
traction. We formalize these forces in a multi-sector spatial model, which we estimate with
high-resolution georeferenced data from major river basins in the Peruvian Amazon and plau-
sibly exogenous variation in the structure of river networks. In the presence of these density
externalities, combining transport infrastructure investments and protection policies can simul-
taneously achieve higher welfare, lower deforestation, and less natural resource depletion. We
also emphasize that such a win-win outcome of welfare and ecosystem conservation can be
achieved subject to careful spatial targeting of both types of policy interventions. This paper
concludes that policies that spread the agglomeration benefits more evenly across space and
consolidate congestion forces into a more compact space are desirable to the environment.

Several limitations remain. First, the counterfactual spatial distribution of human settle-
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ments is studied in a static sense and determined from the set of populated locations in the
benchmark equilibrium. Investigating the dynamic process and consequences of community
formation, resource depletion, policy responses, and the entry of external investments is an im-
portant agenda. Second, we are not directly quantifying a collective value for the preservation
of a traditional way of life. In other words, we are not directly capturing the utility cost of spa-
tial reallocation of the population caused by the counterfactual policy interventions, although
some policies treat the equal number of populations for a meaningful comparison between
outcomes. Moreover, it may be important in studying traditional societies to incorporate local
populations’ values of their living with others of common ancestry, which could also potentially
incite certain political movements such as indigenous rights protections. Incorporating these
factors is beyond the scope of the current model. We nevertheless believe that this paper has
provided a benchmark framework upon which future research can be based to address these
agendas.
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Figures

Figure 1: Study Area
Notes: This map shows the Peruvian Amazon. Two regions inside the thick boundaries represent Loreto and
Ucayali departments. Our study area includes four major river basins: the Napo-Amazon basin (combining
Napo and Amazon basins in the map), the Pastaza basin, the Lower Ucayali basin, and the Upper Ucayali
basin (combining Middle Ucayali and Upper Ucayali basins in the map).
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(A) Benchmark (Deforestation = 104 ha)

(B) Transport infrastructure investments that integrate hinterlands (Deforestation = 92 ha)

(C) Transport infrastructure + Protecting the rural frontier (Deforestation = 80 ha)

Figure 2: Intuitive Illustration of the Deforestation Impacts of Counterfactual Policies
Notes: These figures illustrate the deforestation outcome in a simple river basin with a fixed number of
total population (= 16) under three different scenarios. For simplicity, these figures focus on the agricultural
sector and abstract from sectoral reallocation of the population through general equilibrium effects. There
are 16 agricultural populations. In the left maps, brown areas represent deforested areas for agricultural land
around each community. Each area inside borders represents the deforested area by each farmer. A dark
blue line represents rivers. A light blue line represents rivers with upgraded transport infrastructure. The
right diagrams plot the agricultural population in each community and the size of deforested area per farmer.
1©– 5© represent community identifiers and correspond between the left maps and the right diagrams.
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Figure 3: Population in Rural Locations
Notes: Each map shows population in rural locations in each basin of the study area. The legend is based on
quantiles. Yellow squares represent the urban centers.
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Figure 4: Communities, Populations, and Deforestation
Notes: The maps show the Upper-Ucayali basin. The forest loss measure represents a percentage of the
deforested area inside each grid cell.
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Figure 5: Communities and Deforestation (1985-2015)
Notes: The unit of analysis is a 1km × 1km grid cell in the four river basins. The forest loss measure represents
a percentage of the deforested area inside each grid cell. The information of community locations is from the
Peru Population and Housing Census in 2007.

Figure 6: Populations and Per Capita Land Footprint
Notes: The population information is from the Peru Population and Housing Census in 2007. The total popu-
lation in the 2km buffer surrounding a community is measured by summing populations from communities
whose centroid are inside the buffer.
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Figure 7: Population Density (10km buffer) and Distribution of Activities (Household-level)—
Agriculture vs. Forest Products vs. Wildlife Extractions

Notes: The population information is from the PARLAP community census. We divide the total population
in the xkm buffer by the area of buffer (x2π) to calculate the population density in the xkm buffer. The
total population in the xkm buffer surrounding a community is measured by summing populations from
communities whose centroid are inside the buffer.
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Figure 8: Intuition of Identifying the Density Externalities
Notes: This figure shows three similar areas inside a river basin and illustrates a comparison of the River
Network Access (RNA) measures between pink (in the left), red (in the middle), and brown (in the right)
cells as a plausibly exogenous variation to identify the density externalities. The blue lines indicate rivers and
the white cells indicate river cells (cells that face rivers). RNA captures the weighted sum of the accessibility
to other river cells (the white cells in this figure) whether or not these cells have positive populations. The
middle and right maps have one more river cell than the left map, each in a different location. Therefore,
RNA is higher in the red and brown cells than that in the pink cell. Comparing the red cell in the middle
map with the brown cell in the right map, RNA is higher in the brown cell because the additional cell next
to the top-right is located closer to the brown cell.
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Figure 9: Counterfactual Outcomes without the Agglomeration Externality (Upper Ucayali)
Notes: These maps present the counterfactual outcomes of shutting down the agglomeration externality in
agriculture. Values shown in the legend of the circle dots are relative values in the counterfactual scenarios
in terms of those in the benchmark spatial equilibrium in rural locations. The legend is based on quantiles.
The yellow square represents the urban center.
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Figure 10: Counterfactual Outcomes of Protecting the Rural Frontier (Upper Ucayali)
Notes: These maps present the counterfactual outcomes of a place-based protection policy of controlling the
expansion of rural frontier. This experiment chooses rural locations to be treated in order, starting with those
farthest from the urban center, until the treated population reaches 2.5% of the total rural population in each
basin. The red x marks indicate the treated locations. Values shown in the legend of the circle dots are
relative values in the counterfactual scenarios in terms of those in the benchmark spatial equilibrium in rural
locations. The legend is based on quantiles. The yellow square represents the urban center.
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Figure 11: Counterfactual Outcomes without Small Communities (Upper Ucayali)
Notes: These maps present the counterfactual outcomes of a place-based protection policy that targets the
smallest communities. This experiment chooses rural locations to be treated in order, starting with the
location with the smallest population size, until the treated population reaches 2.5% of the total population
in each basin. The red x marks indicate the treated locations. Values shown in the legend of the circle dots
are relative values in the counterfactual scenarios in terms of those in the benchmark spatial equilibrium in
rural locations. The legend is based on quantiles. The yellow square represents the urban center.
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Figure 12: River Orders and Counterfactual Experiments of Improving Transport Infrastructure
Notes: The light blue lines indicate the river lines without the improvement of transport infrastructure. The
red lines indicate the river lines where the transport infrastructure is upgraded. The yellow square represents
the urban center.
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Figure 13: Counterfactual Outcomes with Improved Transport Infrastructure along River Order 2 (Napo-Amazon)
Notes: These maps present the counterfactual outcomes of improving the transport infrastructure in a way
that hinterlands are connected to the central area of the basin. The light blue lines indicate the river lines
without the improvement of transport infrastructure. The red lines indicate the river lines where the transport
infrastructure is upgraded. Values shown in the legend of the circle dots are relative values in the counterfac-
tual scenarios in terms of those in the benchmark spatial equilibrium in rural locations. The legend is based
on quantiles. The yellow square represents the urban center.
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Figure 14: Counterfactual Outcomes with Improved Transport Infrastructure along River Order 1 (Napo-Amazon)
Notes: These maps present the counterfactual outcomes of concentrating the transport infrastructure invest-
ments in the central area of the basin. The light blue lines indicate the river lines without the improvement of
transport infrastructure. The red lines indicate the river lines where the transport infrastructure is upgraded.
Values shown in the legend of the circle dots are relative values in the counterfactual scenarios in terms of
those in the benchmark spatial equilibrium in rural locations. The legend is based on quantiles. The yellow
square represents the urban center.

59



Tables

Table 1: Human Settlements and Deforestation

Sum N Mean Std. Dev. Min Max
(A) All grid cells in the four basins

1.1. No community exists in a cell 424160.7 149259 2.842 7.601 0 101.97
1.2. There exists a community in a cell 13606.38 1304 10.434 10.8 0 96.93
2.1. No community exists within 2km 302599.5 131962 2.293 6.883 0 101.97
2.2. There exists a community within 2km 135167.6 18601 7.267 10.865 0 101.79
3.1. No community exists within 5km 205061.6 106244 1.93 6.217 0 101.97
3.2. There exists a community within 5km 232705.5 44319 5.251 9.963 0 101.79

(B) Grid cells within 2km from a river line
1.1. No community exists in a cell 301283.9 102075 2.952 7.533 0 101.97
1.2. There exists a community in a cell 12243.42 1232 9.938 10.007 0 88.11
2.1. No community exists within 2km 197397 86501 2.282 6.772 0 101.97
2.2. There exists a community within 2km 116130.3 16806 6.91 10.078 0 101.79
3.1. No community exists within 5km 126734.8 67652 1.877 6.134 0 101.97
3.2. There exists a community within 5km 186792.6 35786 5.22 9.417 0 101.79

Notes: This table presents summary statistics on forest loss from 1985 to 2015 for each grid cell category according to the
presence of settlements. The unit of analysis is a 1km × 1km grid cell in the four river basins. The unit of measurement
for forest loss measure is the hectare. The information of community locations is from the Peru Population and Housing
Census in 2007.

Table 2: Summary of Model Parameters

Parameter Description Estimation strategy
δAg, δNr, δM Elasticity of trade cost Commodity prices from the CC
λup, λland Relative distance in terms of downstream river Travel time and transport costs survey
αAg, αNr, αM Utility weights Normalized to = 1
σ Within-sector elasticity of substitution Expenditure information from ENAHO
σ̄ Across-sector elasticity of substitution Expenditure information from ENAHO
γ Labor share in agricultural production function From the literature (e.g., Sotelo 2020)
θ Trade elasticity From the literature (Donaldson 2018)
µL Congestion in forest clearing Linear IV using the community-level data
µAg Agglomeration in agricultural production Model inversion and linear IV
µNr Congestion in natural resource extraction Model inversion and non-linear GMM
ν Spatial decay in natural resource access Model inversion and non-linear GMM

Notes: See section 4 for the model and section 5 for the structural estimation.
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Table 3: Density Externalities in Agriculture and Natural Resource Extraction

Parameter Point estimate Standard errror Description
(A) Agriculture
µ̃Ag 0.064 0.010 = µAg − (1− γ)µL

J test p-value = 0.648
µL 0.522 0.094 Congestion in forest clearing
µAg 0.273 Agglomeration in agricultural production
(B) Natural resource extraction
µNr 0.335 0.042 Congestion in natural resource extraction
ν 0.593 0.075 Spatial decay of congestion externality

J test p-value = 0.821
Notes: Estimates of density externalities in agriculture (panel A) are based on the linear specification using

ln RNAo and the initial community existence in 1940 as instruments. Estimates of parameters governing con-
gestion externality in natural resource extraction (panel B) are based on the non-linear GMM using ln RNAo and
{ln ∑d|Do,d≤x RNAd} for x ∈ X = {2, 5, 10, 25, 50, 75, 100} as instruments.

Table 4: Quantifying the Effects of Density Externalities

Basin Welfare Deforestation Q (Ag) Q (Nr) N (Ag) N (Nr) N (Urban)
(A) Without the Agglomeration Externality in Agriculture (µAg → 0)
Napo 0.888 1.555 0.654 0.991 1.029 0.956 1.011
Pastaza 0.911 1.241 0.688 0.992 1.044 0.974 0.988
LowerUcayali 0.873 1.214 0.718 0.968 1.051 0.959 0.987
UpperUcayali 0.929 1.177 0.709 0.987 1.066 0.982 0.985
(B) Higher Congestion Externality in Natural Resource Extractions (µNr ↑ by 25%)
Napo 0.770 1.131 0.927 0.497 0.925 1.138 0.955
Pastaza 0.757 1.035 0.909 0.585 0.930 1.087 0.938
LowerUcayali 0.704 1.015 0.901 0.536 0.914 1.088 0.926
UpperUcayali 0.889 0.996 0.980 0.586 0.976 1.156 0.975

Notes: Values shown in the table are relative values in the counterfactual scenarios in terms of those in the
benchmark spatial equilibrium.
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Table 5: Community Population and Availability of Transport Modes

(A) Availability of Transport Modes in a Community
Lancha Colectivo Rapido Peque-peque

(1) (2) (3) (4) (5) (6) (7) (8)
OLS IV OLS IV OLS IV OLS IV

log(No,Ag) 0.0469∗∗∗ 0.144∗∗∗ 0.0478∗∗∗ 0.0280 0.0522∗∗∗ 0.0566∗ -0.00528 0.00418
(0.0111) (0.0430) (0.0115) (0.0383) (0.0108) (0.0292) (0.00576) (0.0156)

Mean (Dep. var.) 0.492 0.492 0.386 0.386 0.110 0.110 0.972 0.972
SD (Dep. var.) 0.500 0.500 0.487 0.487 0.314 0.314 0.164 0.164
First stage F-stat 24.845 24.845 24.845 24.845
Observations 906 906 906 906 906 906 906 906
(B) Frequency of Transport Modes Passing a Community per Week

Lancha Colectivo Rapido Peque-peque

(1) (2) (3) (4) (5) (6) (7) (8)
OLS IV OLS IV OLS IV OLS IV

log(No,Ag) 0.162 1.055∗∗ 0.213∗∗ 0.336 0.0439 -0.287 0.225 0.518
(0.118) (0.468) (0.0958) (0.305) (0.283) (0.574) (0.177) (0.677)

Mean (Dep. var.) 3.429 3.429 5.154 5.154 6.164 6.164 5.835 5.835
SD (Dep. var.) 2.468 2.468 2.368 2.368 1.772 1.772 2.019 2.019
First stage F-stat 7.351 10.260 3.758 3.233
Observations 330 330 276 276 61 61 144 144

Basin FE Yes Yes Yes Yes Yes Yes Yes Yes
Geographic controls Yes Yes Yes Yes Yes Yes Yes Yes

Notes: Robust standard errors in parentheses. The unit of anaylysis is a community in the PARLAP Community Census (CC)
in 2014. We use log(RNAo) and the initial community existence in 1940 as instruments for log(No,Ag). Geographical controls
include a dummy of high river orders (4 and 5), distance to the urban center, distance to the river, squared distance to the
river, interaction terms of these two variables with a river cell dummy, elevation, river confluence, flood vulnerability, geology
measures, and open water access measures for a grid cell where each census community belongs.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 6: Community Population and Modern Technology Use

(A) Basic infrastructure
(1) (2) (3) (4) (5) (6)

Irrigation Certified seed
Crops have been
certified organic

Electricity for
agricultural work

Animals for
agricultural work

Tractors for
agricultural work

log(No,Ag) -0.00329∗ -0.000857 0.0000692 -0.000688 0.00315 0.000476
(0.00180) (0.00430) (0.000584) (0.000863) (0.00206) (0.000811)

Mean (Dep. var.) 0.013 0.064 0.001 0.003 0.010 0.002
SD (Dep. var.) 0.112 0.245 0.037 0.054 0.098 0.044
First stage F-stat 1649.082 1649.082 1649.082 1649.082 1649.082 1649.082
Observations 25827 25827 25827 25827 25827 25827
(B) Inputs into land and crops

(1) (2) (3) (4) (5) (6)
Guano/manure/

compost
Chemical
fertilizers Insecticides Herbicides Fungicides

Biologic
control

log(No,Ag) 0.000807 0.00265∗∗ 0.0228∗∗∗ 0.0314∗∗∗ 0.0118∗∗∗ -0.00239
(0.00111) (0.00115) (0.00353) (0.00371) (0.00219) (0.00239)

Mean (Dep. var.) 0.005 0.004 0.040 0.051 0.012 0.020
SD (Dep. var.) 0.069 0.063 0.197 0.221 0.111 0.140
First stage F-stat 1649.082 1649.082 1649.082 1649.082 1649.082 1649.082
Observations 25827 25827 25827 25827 25827 25827
(C) Animal, electrical, or mechanical energy

(1) (2) (3) (4) (5) (6)
Iron plow of

animal traction
Wooden plow of
animal traction Harvester Foot plow

Motorized
sprayer

Manual
sprayer

log(No,Ag) -0.000796 -0.000223 -0.000229 -0.000806 0.00197∗∗ 0.0214∗∗∗

(0.000523) (0.000311) (0.000282) (0.000556) (0.000815) (0.00401)
Mean (Dep. var.) 0.001 0.000 0.001 0.001 0.002 0.062
SD (Dep. var.) 0.035 0.022 0.025 0.035 0.043 0.241
First stage F-stat 1649.082 1649.082 1649.082 1649.082 1649.082 1649.082
Observations 25827 25827 25827 25827 25827 25827
(D) Electrical or mechanical energy

(1) (2) (3) (4) (5) (6)
Grain
mill

Grass
chopper Thresher

Electric
generator

Wheel
tractor

Boat/canue/
speedboat

log(No,Ag) 0.00696∗∗∗ 0.000462 -0.00102 -0.0103∗∗∗ 0.000932 -0.0187∗∗

(0.00194) (0.000448) (0.000674) (0.00323) (0.000590) (0.00746)
Mean (Dep. var.) 0.013 0.001 0.004 0.036 0.001 0.618
SD (Dep. var.) 0.111 0.025 0.061 0.186 0.030 0.486
First stage F-stat 1649.082 1649.082 1649.082 1649.082 1649.082 1649.082
Observations 25827 25827 25827 25827 25827 25827

Basin FE Yes Yes Yes Yes Yes Yes
Geographic controls Yes Yes Yes Yes Yes Yes

Notes: Robust standard errors in parentheses. The unit of anaylysis is a household in the 2012 Peruvian Agricultural Census. We use
log(RNAo) and the initial community existence in 1940 as instruments for log(No,Ag). Geographical controls include a dummy of high river
orders (4 and 5), distance to the urban center, distance to the river, squared distance to the river, interaction terms of these two variables with
a river cell dummy, elevation, river confluence, flood vulnerability, geology measures, and open water access measures for a grid cell where
each census community belongs.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 7: Counterfactual Experiments of Protection Policies

Basin Welfare Deforestation Q (Ag) Q (Nr) N (Ag) N (Nr) N (Urban)
(A) Protecting the rural frontier
Napo 0.998 0.948 0.999 0.997 1.002 1.003 0.996
Pastaza 0.999 0.975 0.999 1.001 1.001 1.000 0.998
LowerUcayali 0.997 0.967 0.999 0.997 0.999 1.001 0.996
UpperUcayali 0.998 0.980 1.000 0.992 1.001 1.004 0.999
(B) Not allowing new community formation
Napo 0.998 0.915 1.008 1.002 1.002 1.002 0.997
Pastaza 0.997 0.951 1.004 1.000 0.999 1.003 0.997
LowerUcayali 0.997 0.979 0.996 0.994 0.998 1.002 0.998
UpperUcayali 0.999 0.970 1.004 1.001 1.001 1.002 0.999
(C) Not allowing for small communities
Napo 0.997 0.869 1.009 1.002 1.002 1.003 0.996
Pastaza 0.996 0.936 1.003 1.002 0.999 1.003 0.996
LowerUcayali 0.998 0.900 1.008 1.003 1.001 1.000 0.994
UpperUcayali 0.999 0.927 1.009 1.005 1.001 1.003 0.999

Notes: Values shown in the table are relative values in the counterfactual scenarios in terms of those in
the benchmark spatial equilibrium. Each policy directly treats 2.5% of rural populations in the benchmark
equilibrium in each basin for resettlement.

Table 8: Counterfactual Experiments of Improving Transport Infrastructure

Basin Welfare Deforestation Q (Ag) Q (Nr) N (Ag) N (Nr) N (Urban)
(A) Transport infrastructure improved (λupgraded = 0.8) along river order = 2
Napo 1.018 0.989 0.992 0.997 0.996 0.998 1.004
Pastaza 1.013 0.976 1.028 0.995 1.003 0.999 0.998
LowerUcayali 1.023 1.014 1.022 0.978 1.000 0.995 1.023
UpperUcayali 1.012 0.989 1.024 1.003 1.002 1.005 0.998
(B) Transport infrastructure improved (λupgraded = 0.8) along river order = 1
Napo 1.010 1.060 0.974 0.997 0.994 0.997 1.007
(C) Transport infrastructure improved (λupgraded = 0.8) along river order = 1, 2
Napo 1.029 1.051 0.969 0.995 0.991 0.995 1.011
(D) Symmetric trade cost (λup = 1)
Napo 1.011 1.023 0.985 0.997 0.996 0.997 1.005
Pastaza 1.008 1.006 1.002 0.999 1.000 1.000 1.000
LowerUcayali 1.009 1.035 1.003 0.992 0.999 0.998 1.018
UpperUcayali 1.005 1.011 1.005 1.004 1.003 1.006 0.998
(E) Transport infrastructure improved (λupgraded = 0.8) along river order = 2

with checkposts that prohibit transporting natural resource goods
Napo 1.012 0.968 0.998 1.002 1.000 1.002 0.999
Pastaza 1.007 0.979 1.021 0.999 1.000 1.002 0.996
LowerUcayali 1.010 1.020 1.011 0.991 0.996 1.002 1.007
UpperUcayali 1.009 0.988 1.026 1.007 1.002 1.009 0.998

Notes: Values shown in the table are relative values in the counterfactual scenarios in terms of those in the
benchmark spatial equilibrium.
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Table 9: Counterfactual Outcomes of a Composite Intervention

Basin Welfare Deforestation Q (Ag) Q (Nr) N (Ag) N (Nr) N (Urban)
Protecting the rural frontier &
Transport infrastructure improved (λupgraded = 0.8) along river order = 2
Napo 1.016 0.933 0.990 0.994 0.999 1.001 1.011
Pastaza 1.010 0.953 1.024 0.997 1.004 0.999 0.996
LowerUcayali 1.021 0.990 1.019 0.976 1.000 0.996 1.021
UpperUcayali 1.010 0.969 1.024 0.995 1.003 1.009 0.997

Notes: Values shown in the table are relative values in the counterfactual scenarios in terms of those in
the benchmark spatial equilibrium. The frontier protection directly treats 2.5% of rural populations in the
benchmark equilibrium in each basin for resettlement.
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A Additional Figures and Tables

Figure A.1: Establishment of Rainforest Communities over Decades in the Napo-Amazon Basin
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Figure A.2: Establishment of Rainforest Communities over Decades in the Upper Ucayali Basin
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Figure A.3: Communities and Deforestation (2001-2015)
Notes: The unit of analysis is a 1km × 1km grid cell in the four river basins. The forest loss measure represents
a percentage of the deforested area inside each grid cell. The information of community locations is from the
Peru Population and Housing Census in 2007.
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Figure A.4: Populations and Per Capita Deforestation with Different Buffers
Notes: The population information is from the Peru Population and Housing Census in 2007. The total popu-
lation in the xkm buffer surrounding a community is measured by summing populations from communities
whose centroid are inside the buffer.
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Figure A.5: Populations and Per Capita Non-Forest Area with Different Buffers
Notes: The population information is from the Peru Population and Housing Census in 2007. The total popu-
lation in the xkm buffer surrounding a community is measured by summing populations from communities
whose centroid are inside the buffer.
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Figure A.6: Populations and Per Capita Deforestation
Notes: The population information is from the Peru Population and Housing Census in 2007. The total
population in the 2 km and 5 km buffers surrounding a community is measured by summing populations
from communities whose centroid are inside the buffers.
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Figure A.7: Population Density (1km buffer) and Distribution of Activities (Household-level)—
Agriculture vs. Forest Products vs. Wild Animal Extractions

Notes: The population information is from the PARLAP community census. We divide the total population
in the xkm buffer by the area of buffer (x2π) to calculate the population density in the xkm buffer. The
total population in the xkm buffer surrounding a community is measured by summing populations from
communities whose centroid are inside the buffer.
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Figure A.8: Population Density (2km buffer) and Distribution of Activities (Household-level)—
Agriculture vs. Forest Products vs. Wild Animal Extractions

Notes: The population information is from the PARLAP community census. We divide the total population
in the xkm buffer by the area of buffer (x2π) to calculate the population density in the xkm buffer. The
total population in the xkm buffer surrounding a community is measured by summing populations from
communities whose centroid are inside the buffer.
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Figure A.9: Population Density (5km buffer) and Distribution of Activities (Household-level)—
Agriculture vs. Forest Products vs. Wild Animal Extractions

Notes: The population information is from the PARLAP community census. We divide the total population
in the xkm buffer by the area of buffer (x2π) to calculate the population density in the xkm buffer. The
total population in the xkm buffer surrounding a community is measured by summing populations from
communities whose centroid are inside the buffer.
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Figure A.10: Transport Modes in the Peruvian Amazon
Notes: Canue (top-left) is the most traditional transport mode. Peque-peque (top-right) is the most widely-
available transport mode with engine. Rapido (bottom-left) is an express motor boat. Lancha (bottom-right)
is the largest boat type to carry people and cargo. The latter two types are faster, but they are not commonly
available in all communities.
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Figure A.11: Voronoi Polygons and Working Areas around the Census Communities
Notes: To proxy community boundaries for agricultural land use, we partition land in the study area into
voronoi polygons. We define community boundaries as being up to 5 km from the centroid of the commu-
nities in the CC data. Within each community voronoi polygon, we detect all patches of agricultural fields
and secondary forests through satellite images. We then sum them up to calculate the working area (land
footprint) of each community. See Coomes et al. (2021) for more details. This community-level land footprint
information is used for estimating the congestion externality in forest clearing.
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Figure A.12: Counterfactual Outcomes without the Agglomeration Externality (Napo-Amazon)
Notes: These maps present the counterfactual outcomes of shutting down the agglomeration externality in
agriculture. Values shown in the legend of the circle dots are relative values in the counterfactual scenarios
in terms of those in the benchmark spatial equilibrium in rural locations. The legend is based on quantiles.
The yellow square represents the urban center.
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Figure A.13: Counterfactual Outcomes of Protecting the Rural Frontier (Napo-Amazon)
Notes: These maps present the counterfactual outcomes of a place-based protection policy of controlling the
expansion of rural frontier. This experiment chooses rural locations to be treated in order, starting with those
farthest from the urban center, until the treated population reaches 2.5% of the total rural population in each
basin. The red x marks indicate the treated locations. Values shown in the legend of the circle dots are
relative values in the counterfactual scenarios in terms of those in the benchmark spatial equilibrium in rural
locations. The legend is based on quantiles. The yellow square represents the urban center.
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Figure A.14: Counterfactual Outcomes without Small Communities (Napo-Amazon)
Notes: These maps present the counterfactual outcomes of a place-based protection policy that targets the
smallest communities. This experiment chooses rural locations to be treated in order, starting with the
location with the smallest population size, until the treated population reaches 2.5% of the total population
in each basin. The red x marks indicate the treated locations. Values shown in the legend of the circle dots
are relative values in the counterfactual scenarios in terms of those in the benchmark spatial equilibrium in
rural locations. The legend is based on quantiles. The yellow square represents the urban center.
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Figure A.15: Counterfactual Outcomes with Improved Transport Infrastructure along River Order 2 (Upper Ucay-
ali)

Notes: These maps present the counterfactual outcomes of improving the transport infrastructure in a way
that hinterlands are connected to the central area of the basin. The light blue lines indicate the river lines
without the improvement of transport infrastructure. The red lines indicate the river lines where the transport
infrastructure is upgraded. Values shown in the legend of the circle dots are relative values in the counterfac-
tual scenarios in terms of those in the benchmark spatial equilibrium in rural locations. The legend is based
on quantiles. The yellow square represents the urban center.
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Table A.1: Natural Resource Endowments, Calibrated Productivity, and Commu-
nity Land Footprint

(A) Number of species found around a community
(1) (2) (3) (4) (5)

Total Fish Timber NTFP Game
log(Ão,Nr) (calibrated) 0.206∗∗∗ 0.0220 0.386∗∗∗ 0.0488∗∗ 0.380∗∗∗

(0.0306) (0.0334) (0.0407) (0.0204) (0.0437)
Mean (Dep. var.) 2.025 3.161 1.788 0.552 1.958
SD (Dep. var.) 1.145 1.163 1.676 0.893 1.636
R2 0.059 0.150 0.126 0.349 0.213
Observations 909 909 909 909 909
(B) Number of species found around a community

(1) (2) (3) (4) (5)
Total Fish Timber NTFP Game

log (land footprint) 0.0171 -0.0653∗ -0.0209 0.0126 0.0752
(0.0381) (0.0383) (0.0533) (0.0245) (0.0478)

Mean (Dep. var.) 2.021 3.147 1.796 0.555 1.956
SD (Dep. var.) 1.147 1.183 1.677 0.894 1.637
R2 0.014 0.163 0.059 0.336 0.146
Observations 906 906 906 906 906
(C) Number of species found around a community

(1) (2) (3) (4) (5)
Total Fish Timber NTFP Game

log (depth of land footprint) 0.0458 -0.0358 -0.135∗ -0.0248 0.0911
(0.0587) (0.0541) (0.0771) (0.0342) (0.0728)

Mean (Dep. var.) 2.070 3.168 1.873 0.550 1.964
SD (Dep. var.) 1.141 1.159 1.676 0.885 1.626
R2 0.026 0.170 0.059 0.364 0.146
Observations 811 811 811 811 811

Basin FE Yes Yes Yes Yes Yes
Geographic controls No No No No No

Notes: Robust standard errors in parentheses. The unit of anaylysis is a community in the PARLAP
Community Census (CC) in 2014. In panel (B), the land footprint represents the community-level
land footprint within a voronoi polygon around the settlement, detected in satellite images. In
panel (C), the land footprint depth represents the distance from the river to the furthest inland
point in the community-level land footprint.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A.2: River Networks, Initial Communities, and Current Populations

log(No,Ag)
Community

existence (1940)

(1) (2) (3) (4) (5)
log(RNAo) 0.758∗∗∗ 0.711∗∗∗ -0.0145 0.0699

(0.223) (0.218) (0.0254) (0.0726)
Community existence (1940) 0.740∗∗∗ 0.730∗∗∗

(0.0983) (0.0980)
Basin FE Yes Yes Yes Yes Yes
Geographic controls Yes Yes Yes No Yes
Mean (Dep. var.) 4.322 4.322 4.322 0.194 0.194
SD (Dep. var.) 1.192 1.192 1.192 0.395 0.395
R2 0.154 0.195 0.206 0.094 0.117
Observations 893 893 893 904 899

Notes: Robust standard errors in parentheses. The sample includes 1 square km grid cells that
have positive populations. Geographical controls include a dummy of high river orders (4 and 5),
distance to the urban center, distance to the river, squared distance to the river, interaction terms
of these two variables with a river cell dummy, elevation, river confluences, flood vulnerability,
geology measures, and open water access measures.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table A.3: Correlations between Instrumental Variables and Geographic Fundamentals

(A) River Network Access
(1) (2) (3) (4) (5) (6)

Water share:
non-main
channel

River confluence:
1st×2nd

or 2nd×3rd
River confluence:

3rd×4th
Flood

vulnerability
Pleistocene
soil share

Tertiary
soil share

log(RNAo) 0.00751 0.0470 -0.0743 -0.217 -0.0444 -0.0498
(0.0161) (0.0470) (0.0618) (0.307) (0.0362) (0.0474)

Mean (Dep. var.) 0.030 0.077 0.083 1.606 0.021 0.211
SD (Dep. var.) 0.087 0.266 0.277 1.606 0.115 0.344
R2 0.068 0.095 0.137 0.130 0.057 0.735
Observations 899 899 899 899 899 899
(B) Early human settlements

(1) (2) (3) (4) (5) (6)
Water share:

main
channel

Water share:
non-main
channel

Flood
vulnerability

Floodplain
soil share

Pleistocene
soil share

Tertiary
soil share

Community existence (1940) 0.0263 -0.00352 0.218 0.00191 0.00777 -0.0108
(0.0193) (0.00698) (0.142) (0.0268) (0.0122) (0.0257)

Mean (Dep. var.) 0.109 0.030 1.606 0.584 0.021 0.211
SD (Dep. var.) 0.203 0.087 1.606 0.359 0.115 0.344
R2 0.162 0.038 0.116 0.250 0.030 0.243
Observations 899 899 899 899 899 899

Basin FE Yes Yes Yes Yes Yes Yes
Geographic controls Yes Yes Yes Yes Yes Yes

Notes: Robust standard errors in parentheses. The sample includes 1 square km grid cells that have positive populations. In
panel (A), geographical controls include a dummy of high river orders (4 and 5), distance to the urban center, distance to the
river, squared distance to the river, interaction terms of these two variables with a river cell dummy, elevation, water share of
main channel rivers, and floodplain soil share. In panel (B), geographical controls include a dummy of high river orders (4 and
5), distance to the urban center, distance to the river, squared distance to the river, interaction terms of these two variables with
a river cell dummy, elevation, and river confluences.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

18



Table A.4: Agglomeration Externality in Agriculture

The calibrated value of log(Ão,Ag)
All locations No < 1000

(1) (2) (3) (4) (5) (6) (7) (8)
log(No,Ag) 0.676∗∗∗ 0.440∗∗ 0.514∗∗∗ 0.501∗∗∗ 0.735∗∗∗ 0.384∗∗ 0.509∗∗∗ 0.464∗∗∗

(0.0207) (0.171) (0.0809) (0.0790) (0.0196) (0.169) (0.124) (0.109)
Basin FE Yes Yes Yes Yes Yes Yes Yes Yes
Geographic controls Yes Yes Yes Yes Yes Yes Yes Yes
IV: RNA No Yes No Yes No Yes No Yes
IV: Historical No No Yes Yes No No Yes Yes
Mean (Dep. var.) -0.096 -0.096 -0.096 -0.096 -0.172 -0.172 -0.172 -0.172
SD (Dep. var.) 4.578 4.578 4.578 4.578 4.614 4.614 4.614 4.614
First stage F-stat 11.502 56.653 31.005 15.298 35.632 22.822
Hansen’s J test p-value 0.648 0.472
Observations 893 893 893 893 852 852 852 852

Notes: Robust standard errors in parentheses. The sample includes 1 square km grid cells that have positive populations.
We use log(RNAo) (IV: RNA) and the initial community existence in 1940 (IV: Historical) as instruments for log(No,Ag).
Geographical controls include a dummy of high river orders (4 and 5), distance to the urban center, distance to the river,
squared distance to the river, interaction terms of these two variables with a river cell dummy, elevation, river confluences,
flood vulnerability, geology measures, and open water access measures.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table A.5: Agglomeration Externality in Agriculture

The calibrated value of log(Ão,Ag)
IV OLS

(1) (2) (3) (4) (5) (6) (7)
log(No,Ag) 0.434∗∗∗ 0.519∗∗∗ 0.519∗∗∗ 0.521∗∗∗ 0.509∗∗∗ 0.501∗∗∗ 0.676∗∗∗

(0.0920) (0.0789) (0.0788) (0.0789) (0.0789) (0.0790) (0.0207)
log (Elevation) 2.341∗∗∗ 2.354∗∗∗ 2.324∗∗∗ 2.360∗∗∗ 2.397∗∗∗ 2.252∗∗∗

(0.171) (0.175) (0.179) (0.176) (0.177) (0.176)
River confluence (1st×2nd or 2nd×3rd) 0.0155 0.0186 0.0206 0.0309 0.0180

(0.0958) (0.0964) (0.0982) (0.0995) (0.0969)
River confluence (3rd×4th) -0.0356 -0.0339 -0.0246 -0.0266 0.0173

(0.0724) (0.0723) (0.0730) (0.0733) (0.0618)
Flood vulnerability (1-4) -0.0115 -0.00947 -0.0123 -0.0154

(0.0136) (0.0137) (0.0137) (0.0130)
Water share: non-main channel 0.0806 0.123 -0.00146

(0.238) (0.238) (0.203)
Water share: main channel 0.161 0.185 0.189

(0.122) (0.121) (0.120)
Floodplain soil share 0.127∗∗ 0.126∗∗

(0.0625) (0.0575)
Pleistocene soil share 0.175 0.333

(0.222) (0.227)
Basin FE Yes Yes Yes Yes Yes Yes Yes
Mean (Dep. var.) -0.094 -0.096 -0.096 -0.096 -0.096 -0.096 -0.096
SD (Dep. var.) 4.576 4.578 4.578 4.578 4.578 4.578 4.578
First stage F-stat 28.030 29.419 29.974 29.634 30.770 31.005
Observations 894 893 893 893 893 893 893

Notes: Robust standard errors in parentheses. The sample includes 1 square km grid cells that have positive populations. We use
log(RNAo) and the initial community existence in 1940 as instruments for log(No,Ag). Other controls include distance to the urban
center, distance to the river, squared distance to the river, and interaction terms of these two variables with a river cell dummy.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A.6: Density Externality in Forest Clearing

log (per capita land footprint)
All locations No < 1000 No < 500

(1) (2) (3) (4) (5) (6)
OLS IV OLS IV OLS IV

log(No,Ag) -0.650∗∗∗ -0.522∗∗∗ -0.654∗∗∗ -0.552∗∗∗ -0.674∗∗∗ -0.545∗∗∗

(0.0307) (0.0940) (0.0323) (0.109) (0.0346) (0.123)
Basin FE Yes Yes Yes Yes Yes Yes
Geographic controls Yes Yes Yes Yes Yes Yes
Mean (Dep. var.) 0.929 0.929 0.956 0.956 0.981 0.981
SD (Dep. var.) 1.231 1.231 1.218 1.218 1.223 1.223
First stage F-stat 34.198 28.141 23.709
Hansen’s J test p-value 0.987 0.896 0.969
Observations 895 895 878 878 847 847

Notes: Robust standard errors in parentheses. The unit of anaylysis is a community in the PARLAP Com-
munity Census (CC) in 2014. We use log(RNAo) and the initial community existence in 1940 as instruments
for log(No,Ag). Geographical controls include a dummy of high river orders (4 and 5), distance to the urban
center, distance to the river, squared distance to the river, interaction terms of these two variables with a
river cell dummy, elevation, river confluence, flood vulnerability, geology measures, and open water access
measures for a grid cell where each census community belongs.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table A.7: Congestion Externality in Natural Resource Extraction with Spatial Spillovers

The calibrated value of log(Ão,Nr)
IV OLS

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
log(No,Nr) -2.127∗∗ -1.385 -0.879 -0.581 0.0960 0.278 0.573∗∗∗ 0.634∗∗∗ 0.606∗∗∗ 0.950∗∗∗

(1.075) (0.939) (0.688) (0.558) (0.322) (0.280) (0.208) (0.179) (0.184) (0.0516)
log(∑d|Do,d≤2km Nd,Nr) -0.573∗ -0.0343 0.0235 -0.0745 -0.0705 -0.0648 -0.0745 -0.0856 -0.0663

(0.331) (0.282) (0.236) (0.143) (0.122) (0.0883) (0.0822) (0.0838) (0.0611)
log(∑d|Do,d≤5km Nd,Nr) -0.596∗∗∗ -0.286 -0.138 -0.130 -0.120∗ -0.111∗ -0.112∗ -0.132∗∗∗

(0.189) (0.183) (0.106) (0.0888) (0.0637) (0.0597) (0.0613) (0.0425)
log(∑d|Do,d≤10km Nd,Nr) -0.337∗∗ 0.0345 0.0364 0.0579 0.0425 0.0322 0.0140

(0.141) (0.107) (0.0885) (0.0625) (0.0596) (0.0639) (0.0378)
log(∑d|Do,d≤25km Nd,Nr) -0.470∗∗∗ -0.357∗∗∗ -0.327∗∗∗ -0.294∗∗∗ -0.285∗∗∗ -0.165∗∗∗

(0.0918) (0.0837) (0.0584) (0.0560) (0.0571) (0.0283)
log(∑d|Do,d≤50km Nd,Nr) -0.195∗∗∗ -0.0318 -0.0548 -0.0480 -0.0619∗∗

(0.0610) (0.0581) (0.0526) (0.0548) (0.0242)
log(∑d|Do,d≤75km Nd,Nr) -0.280∗∗∗ -0.0758 -0.0407 -0.0989∗∗∗

(0.0779) (0.125) (0.142) (0.0352)
log(∑d|Do,d≤100km Nd,Nr) -0.258∗ -0.439∗ -0.263∗∗∗

(0.141) (0.231) (0.0498)
log(∑d|Do,d≤150km Nd,Nr) 0.187 0.0970∗

(0.171) (0.0567)
Basin FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Geographic controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Mean (Dep. Var.) 0.337 0.337 0.337 0.337 0.337 0.337 0.337 0.337 0.337 0.337
SD (Dep. Var.) 2.862 2.862 2.862 2.862 2.862 2.862 2.862 2.862 2.862 2.862
Observations 894 894 894 894 894 894 894 894 894 894

Notes: Robust standard errors in parentheses. The sample includes 1 square km grid cells that have positive populations. We use ln RNAo and
{ln ∑d|Do,d≤x RNAd} for x ∈ X as instruments when endogenous variables include log(No,Nr) and {ln ∑d|Do,d≤x Nd,Nr} for x ∈ X . Geographical controls
include a dummy of high river orders (4 and 5), distance to the river, squared distance to the river, interaction terms of these two variables with a river cell
dummy, elevation, river confluence, flood vulnerability, geology measures, and open water access measures.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A.8: Community Population and Trade Environment

Availability of
a river trader

Community population
being contracted

Contractors living
in the community

(1) (2) (3) (4) (5) (6)
OLS IV OLS IV OLS IV

log(No,Ag) 0.0102 0.0430∗ 0.0412∗∗∗ 0.0988∗∗ 0.0489∗∗∗ 0.118∗∗∗

(0.00693) (0.0244) (0.0125) (0.0395) (0.0101) (0.0350)
Basin FE Yes Yes Yes Yes Yes Yes
Geographic controls Yes Yes Yes Yes Yes Yes
Mean (Dep. var.) 0.031 0.031 0.182 0.182 0.056 0.056
SD (Dep. var.) 0.173 0.173 0.386 0.386 0.231 0.231
First stage F-stat 24.84462 26.12503 23.28224
Observations 906 906 891 891 853 853

Notes: Robust standard errors in parentheses. The unit of anaylysis is a community in the PARLAP Community
Census (CC) in 2014. We use log(RNAo) and the initial community existence in 1940 as instruments for
log(No,Ag). Geographical controls include a dummy of high river orders (4 and 5), distance to the urban center,
distance to the river, squared distance to the river, interaction terms of these two variables with a river cell
dummy, elevation, river confluence, flood vulnerability, geology measures, and open water access measures for
a grid cell where each census community belongs.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table A.9: Community Population and Contracts for Trading Products

Community population being contracted for
Maize Rice Fish Timber

(1) (2) (3) (4) (5) (6) (7) (8)
OLS IV OLS IV OLS IV OLS IV

log(No,Ag) 0.0120∗ 0.0599∗∗ 0.0275∗∗∗ 0.0254
(0.00637) (0.0300) (0.00780) (0.0164)

log(No,Nr) 0.0282∗∗∗ 0.0283 0.0325∗∗∗ -0.248∗

(0.00788) (0.0440) (0.00967) (0.138)
Basin FE Yes Yes Yes Yes Yes Yes Yes Yes
Geographic controls Yes Yes Yes Yes Yes Yes Yes Yes
Mean (Dep. var.) 0.034 0.034 0.020 0.020 0.029 0.029 0.112 0.112
SD (Dep. var.) 0.180 0.180 0.141 0.141 0.168 0.168 0.316 0.316
First stage F-stat 14.59049 14.59049 8.799949 8.799949
Observations 891 891 891 891 892 892 892 892

Notes: Robust standard errors in parentheses. The unit of anaylysis is a community in the PARLAP Community Census (CC) in
2014. We use log(RNAo) and the initial community existence in 1940 as instruments for log(No,Ag). Geographical controls include
a dummy of high river orders (4 and 5), distance to the urban center, distance to the river, squared distance to the river, interaction
terms of these two variables with a river cell dummy, elevation, river confluence, flood vulnerability, geology measures, and open
water access measures for a grid cell where each census community belongs.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A.10: Community Population and Form of Crop Seed Acquisition

(A) Obtain crop seeds from
Others in the community City or other communities

(1) (2) (3) (4)
OLS IV OLS IV

log(No,Ag) 0.0104 0.0497 -0.00290 -0.0908∗

(0.0106) (0.0371) (0.0150) (0.0514)
Mean (Dep. var.) 0.859 0.859 0.445 0.445
SD (Dep. var.) 0.348 0.348 0.497 0.497
First stage F-stat 24.875 24.875
Observations 907 907 907 907
(B) Obtain crop seeds from outside the community via

Market transactions Non-market transactions

(1) (2) (3) (4)
OLS IV OLS IV

log(No,Ag) 0.00242 0.0228 0.0385∗ -0.0683
(0.0148) (0.0420) (0.0216) (0.0662)

Mean (Dep. var.) 0.900 0.900 0.286 0.286
SD (Dep. var.) 0.300 0.300 0.452 0.452
First stage F-stat 12.049 12.049
Observations 402 402 402 402

Basin FE Yes Yes Yes Yes
Geographic controls Yes Yes Yes Yes

Notes: Robust standard errors in parentheses. The unit of anaylysis is a community in the
PARLAP Community Census (CC) in 2014. We use log(RNAo) and the initial community
existence in 1940 as instruments for log(No,Ag). Geographical controls include a dummy of
high river orders (4 and 5), distance to the urban center, distance to the river, squared distance
to the river, interaction terms of these two variables with a river cell dummy, elevation, river
confluence, flood vulnerability, geology measures, and open water access measures for a grid
cell where each census community belongs.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A.11: Community Population and Crop-Specific Form of Seed Acquisition

Obtain seeds from a city or other communities for
Maize Plantain Rice Yuca

(1) (2) (3) (4) (5) (6) (7) (8)
OLS IV OLS IV OLS IV OLS IV

log(No,Ag) 0.00682 -0.238∗ 0.00373 -0.200 0.0104 0.0636 0.00121 0.0904
(0.0150) (0.143) (0.0138) (0.122) (0.00963) (0.0756) (0.0103) (0.0819)

Basin FE Yes Yes Yes Yes Yes Yes Yes Yes
Geographic controls Yes Yes Yes Yes Yes Yes Yes Yes
Mean (Dep. var.) 0.393 0.393 0.305 0.305 0.126 0.126 0.165 0.165
SD (Dep. var.) 0.489 0.489 0.461 0.461 0.332 0.332 0.372 0.372
First stage F-stat 13.77193 13.77193 13.77193 13.77193
Observations 907 907 907 907 907 907 907 907

Notes: Robust standard errors in parentheses. The unit of anaylysis is a community in the PARLAP Community Census (CC)
in 2014. We use log(RNAo) and the initial community existence in 1940 as instruments for log(No,Ag). Geographical controls
include a dummy of high river orders (4 and 5), distance to the urban center, distance to the river, squared distance to the
river, interaction terms of these two variables with a river cell dummy, elevation, river confluence, flood vulnerability, geology
measures, and open water access measures for a grid cell where each census community belongs.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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B Data Appendix

B.1 PARLAP

Prices

The PARLAP CC data collects the following price information in the census communities.
Producer prices. The producer price is the gate price for products when people sell their

products in the community. The producer price is collected for three agricultural products
(plantain, yuca, and rice) and four natural resource products (aguaje fruit, fresh fish, salted
fish, and salt bush meat). If a product cannot be sold in the community, its price is missing. It
may not always be the case that these products are produced in the community where they are
sold people from other communities can also sell their products.

Consumer prices. Consumer price is the price for commodities when people buy them in
the community. The consumer price is collected for the following products: milled rice, sugar,
cooking oil, soap, batteries, and kerosene. All these commodities including milled rice come
from places outside the community (towns). If they cannot buy a product in the community,
its price is missing.

Sectoral employment shares

The PARLAP CC data collects information about a census community’s current economic activ-
ities and those when the community was established in the current location. The CC data col-
lects the following three types of information about economic activities. First, it asks whether
people in the community currently engage (or engaged in the past) in each of the following
broadly-defined activities: agriculture, livestock, fishing, hunting, non-timber forest products
(NTFPs), timber extraction, aquarium fish, petroleum industry, tourism, the state activity, and
religious mission. Second, if people in the community engage (or engaged) in an economic
activity categorized above, then the principal products produced in the community are listed.
Third, among the broadly-defined economic activities that people in the community engage (or
engaged) in, ranks of engagement in these activities are collected. We exploit the first and third
information to construct the employment shares of agriculture and natural resource extractions
in each community.41 Natural resource extractions include the activities of fishing, hunting,
non-timber forest products (NTFPs), timber extraction, and aquarium fish.

B.2 Survey of travel time and transportation costs

The PARLAP team conducted the survey of travel time and transportation costs. The survey
was done during December 2017-January 2018 in Loreto and during February 2018-June 2019
in Ucayali. All monetary values are in Soles.

The survey provides travel time, passenger fees, gasoline, freights (one bundle of platano
and one sack of 50kg) by season (low water/high water) and direction (upstream/downstream)
for about 20 selected river routes with multiple modes of transport. Modes of transport (boat
types) include lancha, peque-peque, canue, and rapido. Figure A.10 shows these transport
modes. The survey also provides the cost for transporting 50kg package for 500 meter by

41The other activities constitute only a negligible shares and thus we do not consider them.
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land transport at the selected communities and towns that are covered in the above travel time
module.

B.3 Other Data and Variables

Other Data

We additionally use the following data.
Peru National Household Survey (ENAHO). ENAHO is an annual living standard survey,

collected by the Institute Nacional de Estadistica e Informatica (INEI) in Peru. The data is
publicly available from 2004 to present. To keep consistent periods and geography with other
data, we use the data from Loreto and Ucayali departments in the Peruvian Amazon collected
in 2013, 2014, 2015, 2016, and 2017. ENAHO contains detailed household-level information of
consumption expenditure and we use this data to estimate demand parameters.

Other geographical variables

We provide definitions of some geographical control variables.
Distance to the urban center. This variable measures the river-equivalent distance from

each grid cell to the urban center in each basin. We treat downstream and upstream rivers
equivalently for this measure.

Distance to the river. This variable measures distance from the grid cell centroid to the
nearest river point.

River orders. Higher river orders mean more splits from the central river. Our river network
information contains river orders 1–5. We construct a dummy variable which takes one if the
grid cell faces a river whose river order is 4 or 5. We choose these river orders because it tends
to be difficult for large ships to navigate along these river lines.

River confluences. We construct two dummy variables regarding river confluences: (i) a
dummy which takes one if the grid cell faces a confluence between the 1st and 2nd order rivers
or a confluence between the 2nd and 3rd order rivers; (ii) a dummy which takes one if the grid
cell faces a confluence between the 3rd and 4th order rivers;

Flood vulnerability. This variable is primarily based on the Global Inundation Extent from
Multi-Satellites (GIEMS) dataset. It measures, at a fine spatial resolution, areas that do not
flood and does not include water bodies; areas of Open Water; areas under Minimum Annual
Flood Extent; areas under Maximum Annual Flood Extent; areas under Long Term Annual
Flood Extent. See Fluet-Chouinard et al. (2015) for how the flood extents are determined. We
construct a variable which takes the following five values: 0 = the grid cell does not flood and
does not include water bodies; 1 = the grid cell with the highest areas share of Open Water; 2=
the grid cell with the highest area share of Minimum Annual Flood Extent; 3 = the grid cell
with the highest area share of Maximum Annual Flood Extent; 4 = the grid cell with the highest
area share of Long Term Annual Flood Extent.

Water share: main channel. This variable captures the area share of main channel of rivers
in the grid cell, determined from Landsat imagery (Kalacska et al. 2022).

Water share: non-main channel. This variable captures the area share of non-main channel
open water in the grid cell, determined from Landsat imagery (Kalacska et al. 2022). This
measure is regarded as an important predictor for species habitat. The non-main channel of
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open water tends to be found off the main channel of rivers, including lakes, abandoned side
channels of rivers, streams, and other forms of standing water on the floodplain.

Soil characteristics. The original data source is La Carta Geológica Nacional del Peru
(1:100,000) published by the Instituto Geológico Minero y Metalúrgico (INGEMMET). We proxy
the floodplain soil share by the area share of young (Holocene) parent material in the grid cell.
We also construct the area share of Pleistocene soil type in the grid cell. The Tertiary soil type
(older than Pleistocene) is the omitted category. These characteristics are associated with soil
fertility and agricultural productivity. See Coomes et al. (2022) for a detailed discussion.
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C Estimation and Quantification Appendix

C.1 Empirical Tests of the Simplified Model with a Density Externality

We consider a simplified version of the main model in section 4 in the following three di-
mensions. First, we consider one sector with a continuum of goods (that implicitly pool both
agricultural and natural resource goods), in contrast to the multi-sector model. This sector has
land and labor as inputs while the land production process is same as the main model. Sec-
ond, we consider symmetric (or quasi-symmetric) trade costs between locations, in contrast to
asymmetric ones in the main model. The quasi-symmetric cost of transporting a good from o
to d is defined as τod = τ̃odτA

o τB
d where τ̃od = τ̃do. That is, the term that depends on both o

and d is symmetric. The simplest example is τA
o = 1/elevationo and τB

d = elevationd. Third,
we incorporate the density externality from population in the own location but without spatial
spillovers across locations.

Given this setup, following a similar derivation as Donaldson and Hornbeck (2016), we
can derive the measure of consumer’s accessibility to low-price products (“Consumer Market
Access”):

CMAd ≡ P−θ
d = κ2 ∑

o
AoNµθ

o κθ
1(woτod)

−θ

and the measure of firm’s accessibility to consumers with low CMA (“Firm Market Access”):

FMAo ≡∑
d

τθ
odCMA−1

d Yd

Under the quasi-symmetric trade cost with τA
o = (τB

o )
−1, we can define the Market Access

measure with the following relationship :

MAo ≡ FMAo = ρ(τB
o )

2θCMAo ∃ ρ > 0

Solving the balanced trade condition, we can use the Market Access measure to express com-
munity population:

No = κ3A
1

1−θµ̃
o (τB

o )
− 2(1+θ)

1−θµ̃ MA
1+2θ

θ(1−θµ̃)
o

deforestation and per capita deforestation:

DFo = κ4A
1−µL
1−θµ̃
o (τB

o )
− 2(1+θ)(1−µL)

1−θµ̃ MA
(1+2θ)(1−µL)

θ(1−θµ̃)
o

DFo

No
= κ4A

−µL
1−θµ̃
o (τB

o )
2(1+θ)µL

1−θµ̃ MA
− (1+2θ)µL

θ(1−θµ̃)
o
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nominal and real incomes:

Yo = κ5A
1

1−θµ̃
o (τB

o )
− 2θ(1+µ̃)

1−θµ̃ MA
2+µ̃

θ(1−θµ̃)
o

YR
o ≡

Yo

Po
= κ6A

1
1−θµ̃
o (τB

o )
− 2θ(1+µ̃)

1−θµ̃ MA
1+2θ

θ(1−θµ̃)
o

where µL is the parameter governing congestion externality in forest clearing, µ is the parameter
governing agglomeration externality given the obtained land, and µ̃ ≡ µ− µL(1− γ) captures
the net agglomeration.

The one-sector model implies the following empirical specification:

ln yo,t = β0 + β1 ln MAo,t + θXo + φB,t + εo,t (C.1)

where yo,t is an outcome measure of human settlements and forest cover at grid cell o, Xo is
a vector of cell-level geographical controlsand φB,t represents basin × year fixed effects. The
Market Access measure is approximated as:

MAo,t ≈∑
d

Nd,t(τod)
−θ = ∑

d
Nd,t(Dδ

od)
−θ (C.2)

where o, d ∈ 1km × 1km grid cells within 5km from a river (with order 1-6), Nd,t is the pop-
ulation in d at period t, τod is the trade cost, and Dod represents river-equivalent distance
(kilometer) along the least-cost route. To calculate this measure, we set a composite value of
parameters δ · θ = 1.3182 drawing from Donaldson (2018). We report results of both OLS and
IV regressions. The IV regressions use the following River Network Access (RNA) measure,
solely defined by river shapes, as an instrument variable for the Market Access:

RNAo = ∑
d∈RC

τ−θ
od

where RC is a set of all river cells in the basin (cells that contain a river) whether or not they
have positive populations. We will exploit the variation in RNA to estimate density externality
parameters in a later section. In interpreting the results of the Market Access regression, how-
ever, we confine our discussion to be correlational from a conservative perspective as it suffices
to motivate the model.42

Table C.1 reports the relationship between the Market Access and human settlements. The
Market Access is significantly associated with both community formation and population size.
The size of the estimated coefficient based on the IV specification under a reasonable range of θ
implies that congestion force is likely to be dominating on net. The multi-sector model in a later
section will nevertheless emphasize sector-specific agglomeration and congestion externalities.

Table C.3 reports the relationship between the Market Access and forest cover change over
decades.43 The Market Access is significantly associated with forest disturbance, forest loss, and

42We also check that the reduced form results are robust with different sets of controls, the RNA and MA
measures adjusted by river order at origin, considering river networks only up to river order 4 or 5, and the MA
measure with earlier period (1940) population.

43Using static measures of forest covers, Table C.2 reports that the Market Access is negatively associated with
forest areas and positively associated with non-forest areas.
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forest recovery. The following three points are noteworthy. First, interpretation of the positive
associations with forest disturbance and forest loss is straightforward. Locations with higher
market access might attract more people to reside and clear forest for agricultural land use.
Araujo et al. (2023) present consistent results in the context of the Brazilian Amazon. Second,
the Market Access is also associated with forest recovery, an inverse measure of forest loss.
This result reflects the practice of sustainable land use in the shifting cultivation cycle. This
result is also consistent with the recent finding by Coomes et al. (2021) that forest cover relative
to population engaging in small-scale agriculture is stable over time. Finally, the rightmost
column reports that the Market Access is negatively associated with per capita deforestation.44

This observation is consistent with the statement of Fact 2A and the presence of congestion
force in forest clearing. To summarize, the empirical results in this section imply the following
fact.

Fact 2B: Human settlements and forest cover changes (both forest loss and recovery) increase
with Market Access.

C.2 Parameters without Solving the Model

Downstream-River-Equivalent Distance

We use our original records of travel times and freight costs (Appendix B.2).
Upstream-river distance. We calibrate λup by taking the average ratio of upstream-river

travel time to downstream-river travel time by peque-peque across all the travel routes available
in the survey. We obtained λ̂up = 1.282.

Land distance. For comparing the freight costs on land and river transports, we focus
on communities in the land transport data where the river transport data (either as origin or
destination community) is also available. Since we also use the information on the distance
on river network, we further focus on river routes that are found in our river network data
in the four basins. There are two routes that satisfy these criteria: (1) Mazan-Santa Clotilde
(Loreto) and (2) Puerto Alegre-Vinuncuro (Ucayali). For each of these two routes, we first use
the observed river cost, δ̂M (obtained in the previous step in the main text), and the following
relationship:

River transport cost (observed) ≈ pod − poo = (τod − 1)poo = (Dδ̂M
od,river − 1)poo

to back out hypothetical p̂oo. In these two routes, the reported river costs are same in both
directions and thus we assume Dod,river = Ddo,river. We next use the following relationship:

Land transport cost (observed) ≈ [(Dod′,land × λland)
δ̂M − 1] p̂oo

to obtain λ̂land where Dod′,land = 0.5(km) and in each route we use the average value of the 500m
land transport cost between those collected in origin and destination locations. We then take the
average value of λ̂land between those obtained from the two routes. We obtained λ̂land = 36.767.

44The forest loss is between 1985 and 2015 and the denominator population is from the INEI population census
in 2007.
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Table C.1: Market Access and Human Settlements

Community existence log (population)

(1) (2) (3) (4)
OLS IV OLS IV

log(MA) 0.0151∗∗∗ 0.0134∗∗∗ 0.0705∗∗∗ 0.0646∗∗∗

(0.000563) (0.000533) (0.00277) (0.00259)
log (Elevation) 0.000839∗∗ -0.000397 0.00441∗∗ 0.000290

(0.000397) (0.000460) (0.00201) (0.00227)
River confluence (1st×2nd or 2nd×3rd) 0.0687∗∗∗ 0.0690∗∗∗ 0.348∗∗∗ 0.348∗∗∗

(0.00739) (0.00739) (0.0371) (0.0372)
River confluence (3rd×4th) 0.0253∗∗∗ 0.0251∗∗∗ 0.114∗∗∗ 0.114∗∗∗

(0.00249) (0.00248) (0.0115) (0.0115)
Flood vulnerability (1-4) 0.00244∗∗∗ 0.00243∗∗∗ 0.0108∗∗∗ 0.0108∗∗∗

(0.000171) (0.000171) (0.000816) (0.000817)
Floodplain soil share 0.0000232∗∗∗ 0.0000245∗∗∗ 0.000107∗∗∗ 0.000111∗∗∗

(0.00000448) (0.00000446) (0.0000220) (0.0000219)
Pleistocene soil share -0.0000285∗∗∗ -0.0000294∗∗∗ -0.000160∗∗∗ -0.000163∗∗∗

(0.00000446) (0.00000447) (0.0000205) (0.0000205)
Water share: non-main channel 0.000465∗∗∗ 0.000472∗∗∗ 0.00234∗∗∗ 0.00237∗∗∗

(0.0000712) (0.0000713) (0.000351) (0.000352)
Water share: main channel 0.0000192 0.0000230 0.0000950 0.000108

(0.0000407) (0.0000406) (0.000200) (0.000200)
Basin × Year FE Yes Yes Yes Yes
River Order FE Yes Yes Yes Yes
R2 0.038 0.015 0.036 0.014
Mean (Dep. Var.) 0.008 0.008 0.037 0.037
SD (Dep. Var.) 0.089 0.089 0.431 0.431
Observations 403938 403938 403938 403938

Notes: Robust standard errors in parentheses. The sample includes 1 square km grid cells within 5km from rivers (up to
6th order). Other controls include distance to the river, squared distance to the river, and interaction terms of these two
variables with a river cell dummy.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table C.2: Market Access and Forest Cover

Forest area Non-forest area
Per-capita

non-forest area

(1) (2) (3) (4) (5) (6)
OLS IV OLS IV OLS IV

log(MA) -0.206∗∗∗ -0.208∗∗∗ 1.970∗∗∗ 1.586∗∗∗ 0.126∗∗ -0.0726
(0.00607) (0.00491) (0.0243) (0.0441) (0.0621) (0.216)

log (Elevation) -0.174∗∗∗ -0.176∗∗∗ 1.057∗∗∗ 0.753∗∗∗ -0.996∗∗∗ -1.626∗∗

(0.00702) (0.00723) (0.0459) (0.0554) (0.312) (0.723)
River confluence (1st×2nd or 2nd×3rd) -0.0544 -0.0541 0.383∗∗∗ 0.434∗∗∗ -0.201∗ -0.211∗

(0.0385) (0.0385) (0.125) (0.121) (0.121) (0.122)
River confluence (3rd×4th) -0.0660∗∗∗ -0.0662∗∗∗ 0.218∗∗ 0.176∗ -0.156 -0.153

(0.00889) (0.00886) (0.0920) (0.0919) (0.138) (0.140)
Flood vulnerability (1-4) -0.0124∗∗∗ -0.0124∗∗∗ 0.261∗∗∗ 0.257∗∗∗ 0.0155 0.00816

(0.00130) (0.00130) (0.0102) (0.0102) (0.0224) (0.0233)
Floodplain soil share -0.137∗∗∗ -0.136∗∗∗ 1.585∗∗∗ 1.591∗∗∗ -0.155 -0.164

(0.00470) (0.00471) (0.0373) (0.0375) (0.117) (0.119)
Pleistocene soil share 0.0209∗∗∗ 0.0207∗∗∗ -1.362∗∗∗ -1.408∗∗∗ -0.0415 -0.113

(0.00387) (0.00384) (0.0604) (0.0607) (0.267) (0.282)
Water share: non-main channel -2.597∗∗∗ -2.597∗∗∗ 7.176∗∗∗ 7.292∗∗∗ -1.401∗∗∗ -1.382∗∗∗

(0.0720) (0.0723) (0.270) (0.263) (0.477) (0.487)
Water share: main channel -2.962∗∗∗ -2.962∗∗∗ 3.664∗∗∗ 3.694∗∗∗ -0.567∗∗ -0.677∗∗

(0.0877) (0.0878) (0.116) (0.114) (0.260) (0.284)
Basin FE Yes Yes Yes Yes Yes Yes
River Order FE Yes Yes Yes Yes Yes Yes
R2 0.252 0.181 0.205 0.090 0.141 0.032
Mean (Dep. var.) 13.642 13.642 6.553 6.553 7.737 7.737
SD (Dep. var.) 0.554 0.554 4.781 4.781 1.312 1.312
Observations 132369 132369 132369 132369 1189 1189

Notes: Robust standard errors in parentheses. The sample includes 1 square km grid cells within 5km from rivers (up to 6th order).
Other controls include distance to the urban center, distance to the river, squared distance to the river, and interaction terms of these
two variables with a river cell dummy.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table C.3: Market Access and Forest Cover Change

Forest disturbance Forest loss Forest recovery
Per-capita
forest loss

(1) (2) (3) (4) (5) (6) (7) (8)
OLS IV OLS IV OLS IV OLS IV

log(MA) 1.411∗∗∗ 1.742∗∗∗ 0.375∗∗∗ 0.366∗∗∗ 0.402∗∗∗ 0.520∗∗∗ -0.282∗∗∗ -0.733∗∗∗

(0.0247) (0.0338) (0.00570) (0.00832) (0.00662) (0.00963) (0.0873) (0.273)
log (Elevation) 0.345∗∗∗ 0.606∗∗∗ -0.00510 -0.0117 0.313∗∗∗ 0.400∗∗∗ -0.532 -1.897∗∗

(0.0521) (0.0551) (0.0110) (0.0121) (0.0115) (0.0130) (0.403) (0.878)
River confluence (1st×2nd or 2nd×3rd) 0.205 0.160 -0.0151 -0.0138 0.0766∗ 0.0604 -0.342∗ -0.382∗∗

(0.194) (0.195) (0.0375) (0.0374) (0.0437) (0.0444) (0.187) (0.189)
River confluence (3rd×4th) 0.0247 0.0606 0.0487∗∗ 0.0478∗∗ 0.0128 0.0252 -0.287 -0.283

(0.0817) (0.0820) (0.0193) (0.0193) (0.0217) (0.0216) (0.184) (0.186)
Flood vulnerability (1-4) 0.0882∗∗∗ 0.0912∗∗∗ 0.0419∗∗∗ 0.0418∗∗∗ 0.0686∗∗∗ 0.0695∗∗∗ -0.0246 -0.0404

(0.00901) (0.00902) (0.00214) (0.00214) (0.00263) (0.00263) (0.0289) (0.0303)
Floodplain soil share 1.111∗∗∗ 1.106∗∗∗ 0.386∗∗∗ 0.386∗∗∗ 0.536∗∗∗ 0.532∗∗∗ 0.0957 0.0965

(0.0302) (0.0302) (0.00753) (0.00753) (0.00850) (0.00850) (0.156) (0.156)
Pleistocene soil share -0.109∗∗∗ -0.0699∗ -0.168∗∗∗ -0.169∗∗∗ -0.0195 -0.00684 0.342 0.185

(0.0384) (0.0385) (0.00931) (0.00934) (0.0139) (0.0140) (0.290) (0.311)
Water share: non-main channel 2.677∗∗∗ 2.577∗∗∗ 0.580∗∗∗ 0.583∗∗∗ 0.582∗∗∗ 0.539∗∗∗ -0.927∗∗ -0.846∗

(0.360) (0.363) (0.0662) (0.0662) (0.0783) (0.0799) (0.444) (0.494)
Water share: main channel 1.237∗∗∗ 1.212∗∗∗ -0.0594∗ -0.0582 -1.099∗∗∗ -1.115∗∗∗ -0.981∗∗∗ -1.189∗∗∗

(0.209) (0.210) (0.0361) (0.0360) (0.0333) (0.0339) (0.345) (0.365)
Basin FE Yes Yes Yes Yes Yes Yes Yes Yes
River Order FE Yes Yes Yes Yes Yes Yes Yes Yes
R2 0.118 0.065 0.175 0.104 0.218 0.105 0.128 0.002
Mean (Dep. var.) 1.606 1.606 0.668 0.668 1.043 1.043 -2.819 -2.819
SD (Dep. var.) 3.462 3.462 0.919 0.919 1.055 1.055 1.716 1.716
Observations 132369 132369 134646 134646 134646 134646 1203 1203

Notes: Robust standard errors in parentheses. The sample includes 1 square km grid cells within 5km from rivers (up to 6th order). Other controls include
distance to the urban center, distance to the river, squared distance to the river, and interaction terms of these two variables with a river cell dummy. We are
taking logarithms for the dependent variables.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Demand Parameters

We estimate elasticity of substitution between varieties within each sector (σ) and between
sectoral composite products (σ̄), using detailed household-level information on expenditures
and unit values (interpreted as buying prices) over time from the Peru National Household
Survey (Appendix B.3).

Elasticity of substitution between varieties. We first estimate the elasticity of substitution
between varieties in each sector. We estimate the following empirical specification, derived in
part from the expenditure share of each variety (1) in the model and also using the household-
level expenditure information from outside the model:

ln(α̃o,K,t,h(j)) = β0 + (1− σ) ln po,K,t,h(j) + β1Xo,t,h + φK + φt + εo,K,t,h(j) (C.3)

where α̃o,K,t,h(j) is the expenditure share of household h on good j (classified by ENAHO)
of sector K (classified by us) at period t in location o, Xo,t,h is a vector of household-level
demographic variables at t in o, and φK and φt are the sector fixed effect and period fixed
effects.45 po,K,t,h(j) is a unit value of good j of sector K that household h at t in o pays. This
measure is obtained by deriving the value of expenditure on good j by the quantity of its
expenditure and can thus be interpreted as a buying price. We instrument ln po,K,t,h(j) by
ln RNAo (where RNAo is defined by (17)) which is an exogenous price shifter due to a trade
mechanism but plausibly uncorrelated with local preference shocks given controls. Table C.4
reports the results in left columns. The point estimate with the instrument implies the estimated
value to be σ̂ = 2.401. Since σ̂ > 1, this estimate implies that consumption demands of varieties
within the agricultural or natural resource sector are substitute.

Elasticity of substitution between sectoral composite goods. We next estimate the elas-
ticity of substitution between sectoral goods, using the estimated σ̂ above to approximate the
price index measure P̂o,K,t,h = [∑j P(1−σ̂)

o,K,t,h ]
1/(1−σ̂). We estimate the following empirical specifi-

cation, derived in part from the expenditure share of each sectoral good (2) and also using the
household-level expenditure information from outside the model:

ln(α̃o,K,t,h) = β̄0 + (1− σ̄) ln P̂o,K,t,h + β̄1Xo,t,h + φ̄K + φ̄t + εo,K,t,h (C.4)

where α̃o,K,t,h is the expenditure share of household h on sector K goods at period t in location
o. We implement LASSO to select instruments from exogenous productivity shifters in addi-
tion to ln RNAo.46 Table C.4 reports the results in right columns. The point estimate with the
instruments implies the estimated value to be ˆ̄σ = 0.752. Since ˆ̄σ < 1, this estimate implies that
consumption demands across composites of agricultural and natural resource sectors are com-

45The household-level demographic variables include household size, number of adult members, and number
of male members in each household. The period fixed effects include both year fixed effects and the fixed effects
of interview month. The interview month matters because the expenditure variable is based on the household’s
expenditure within 15 days prior to the interview date.

46We add exogenous productivity shifters to instruments because the price index, an aggregated measure across
varieties, is likely to contain varieties produced in each location and thus local productivity shifters in theory have
direct influence on it. This empirical design is internally consistent in that the candidate productivity shifters for
LASSO are same as the controls used to estimate density externalities from inverted productivity composites in
a later stage. We use adaptive LASSO to select a tuning parameter. We did not include productivity shifters for
estimating the elasticity of substitution between varieties because each location does not produce many varieties
observed in ENAHO and thus local productivity shifters have poor explanatory power for prices disaggregated at
varieties.
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plementary. Note also that the estimated value is larger than a general parameter value (0.5) of
the elasticity of substitution across sectoral goods of agriculture and manufacturing in the liter-
ature of structural transformation (e.g., Ngai and Pissarides 2007). This difference is reasonable
because both agricultural and natural resource goods are food items and the complementarity
between them would be weaker than that between food and non-food consumption.

Table C.4: Elasticity of Substitution across Varieties and Sectors

log(Expenditure share)
Across varieties Across sectors

(1) (2) (3) (4)
OLS IV OLS IV

log(po,K(j)), K = Ag, Nr -0.326∗∗∗ -1.401∗∗∗

(0.00810) (0.540)
log(Po,K), K = Ag, Nr 0.00626 0.248∗∗

(0.0371) (0.126)
Basin FE Yes Yes Yes Yes
Mean (Dep. var.) -4.419 -4.419 -1.068 -1.068
SD (Dep. var.) 1.366 1.366 0.447 0.446
First stage F-stat 19.148 13.652
Observations 58115 58115 3276 3270

Notes: Robust standard errors in parentheses. The coefficients correspond to
1− σ and 1− σ̄ regarding elasticity of substitution across varieties and sectors,
respectively. For estimating the elasticity of substitution between sectors, we use
the implied σ from the IV estimation of the elasticity of substitution to construct
the price index measure. The estimation sample includes variety-level or sector-
level expenditures of households from ENAHO during 2013-2017. We control
for year fixed effects, month fixed effects, a dummy of agricultural sector, and
household-level demographic variables. Houesehold-level demographic variables
include household size, number of adult members, and number of male members
in each household. For estimating the elasticity of substitution between varieties,
we use log of RNA as an IV. For estimating the elasticity of substitution between
sectors, we implement LASSO to select IVs from exogenous productivity shifters
in addition to log of RNA.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

C.3 Algorithms for the Model Inversion and Simulation

We provide the algorithm for the model inversion described in section 5.2. The inversion
problem itself is standard. The purpose here is to present the algorithm that mitigates the
computational burden. The model inversion takes place in the following steps:

Step 1. Set initial guesses of the productivity composites in all sectors in all locations up to a

normalization. In particular, we normalize the productivity such that ∑o∈R̃ Ão,Ag+∑o∈R̃ Ão,Nr+Au,M

2R̃+1
=

10. Set initial guess of wages as well.

Step 2. Given the productivities guesses in step 1, obtain wages that balance the overall trade
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by solving the following fixed point problem:

wo =
∑K∈{Ag,Nr} ∑d∈Ĩ πod,Agα̃d,AgwdNd + ∑d∈Ĩ α̃d,MwdNd

No
∀ o ∈ Ĩ

This step is not conceptually necessary to solve the whole problem, but it facilitates com-
putations in the next step. We implement a fixed point iteration to solve this problem,
starting with the wage guesses in step 1.

Step 3. Solve a nested fixed point problem.

The outer problem is to solve the following fixed point problem of equilibrium wages:

wo =
wu

[
∑K=Ag,Nr,M P1−σ̄

o,K

] 1
1−σ̄

[
∑K=Ag,Nr,M P1−σ̄

u,K

] 1
1−σ̄

∀ o ∈ Ĩ (C.5)

that can be derived from (15).

The inner problem is to solve the following fixed point problem of the sectoral productiv-
ity composites:

Ão,K =
woNo,K

∑d∈Ĩ
(woτod,K)−θ

∑o′∈R Ão′ ,K(wo′τo′d,K)
−θ α̃d,KwdNd

K ∈ {Ag, Nr}, o ∈ R (C.6)

Au,M =
P−σ̄

u,M

Nu,M
∑
d∈Ĩ

τ1−σ̄
ud,MwdNd

∑K=Ag,Nr,M P1−σ̄
u,K

that can be derived from (11)–(13).

Set guesses of the productivity composites from step 1. Set guesses of the wages from step
2. We solve for the sectoral productivities by applying a fixed point iteration algorithm
for (C.6). Using the guessed wages and the productivities solved in the inner problem, we
compute the left-hand side of (C.5) to update wages. If the updated wages are sufficiently
close to the guessed wages, then stop. Otherwise, replace guessed wages with the updated
wages and update wages again. We use a fixed point iteration algorithm for this outer
problem as well. In particular, for both the inner and outer problems, we employ the
Anderson acceleration method (Walker and Ni 2011).

To simulate the model under counterfactual scenarios, we first obtain the calibrated values of
productivity fundamentals in all sectors in all locations, using the inverted productivity com-
posites and the estimated density externality parameters. Given the productivity fundamentals,
we then solve for endogenous sectoral populations and wages in all locations using those in the
benchmark spatial equilibrium as initial guesses, but with an additional constraint of the fixed
number of total populations in the basin. We employ the same fixed point iteration algorithm
as in the inversion.
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